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Recognizing and Expressing Affect

Emotions are like thoughts in that they rely upon words, gesture, music,
behavior, and other creative forms of expression for their communciation.
Affective communication occurs in the physical world through the senses,
whether the message is conveyed through a sound pressure waveform, a
visible motion, or via mediating instruments such as physiological sensors.!
Emotions can be expressed voluntarily or involuntarily, in ways that are easy
to control, or in ways of which a person may not be aware. Expressions may
be publicly visible, for example a smile, or accessible only to someone in
close physical contact, who feels your clammy hand. Emotions may also be
communicated by behavior, as through loving actions. In each case, patterns
of information are communicated, and these patterns can be represented in
a computer.

This chapter casts affect recognition as a pattern recognition problem,
and affect expression as pattern synthesis. Taking this approach, a variety
of techniques become available for computer communication of emotion.
The methodology and most of the tools used in this chapter can be found in
textbooks on pattern recognition and modeling.? However, very little work
has been done to apply these tools to affective patterns. In particular, little
is known about which kinds of patterns tend to be the best indicators of a
person’s emotions, and how these patterns might be learned, recognized, and
understood. The goal of this chapter is to lay a foundation for modeling af-
fective patterns so that computers can be given the basic abilities of affect
recognition and expression. This is a first step toward enabling them to in-
teract more naturally with people, recognizing our emotions, and expressing
emotions when appropriate.
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Key Issues for Characterizing Affective Patterns

One of the biggest questions in affect recognition is, “What are the couplings
between affective states and their patterns of expression?” Numerous exper-
imenters have proposed relationships, some of which hold across groups of
individuals and some of which do not. There have also been debates over the
years about whether or not characteristic bodily patterns accompany emo-
tions. In particular, the work of Schachter and Singer in the early 60’s argued
that autonomic patterning only varies in intensity for different emotions,
and that differentiation of emotion is not physical, but cognitive (Schachter,
1964). However, over the years, as technology and signal analysis have pro-
gressed, physiological patterns characteristic of emotions have been discov-
ered. Cacioppo and Tassinary (1990) describe many cases where the specifics
of data collection and analysis have made a big difference in the reliability
of finding physiological patterns that differentiate emotions. This is not to
say that the problem is easy to solve; it is not. Some signals are better at
communicating emotions than others, and which is best can depend on the
emotion, the person expressing it, and the conditions under which the emo-
tion is elicited. One thing that is widely agreed upon is that no single signal
is a trusted indicator of emotional response. Instead, patterns of signals are
needed.

It is important to mention what kind of success we can expect. For example,
it is not appropriate to expect computers to perfectly recognize all of your
feelings. Most people have difficulty recognizing their own feelings and
articulating them. Furthermore, the computer is an outside observer with
limited access to your body and mind; it will not have the same information
as you. It sees from the third-person viewpoint while you see from the first-
person. It does not know everything you know about yourself. Its ability to
recognize your emotions should at best be compared to the ability of another
person to recognize your emotions. A reasonable criterion of success is to
get a computer to recognize affect as well as another person, i.e., better than
chance, but below 100% accuracy.

In some cases we can expect computers to perform better than people. In
particular, with wearable computers and “smart clothing,” the computer can
continuously attend to physiological patterns, especially biosignals such as
heart rate or muscular tension. Computers have superior abilities for process-
ing patterns, although humans remain superior at interpreting meaning in
patterns. The best results are likely to come from a combination of human
and computer abilities. In particular, a person with a wearable affective com-
puter will find an opportunity to learn things about himself or herself that
might not be learned otherwise. I will address wearables in a later chapter.
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Although I write of “recognizing emotions,” I am not proposing that com-
puters could recognize or measure affective states directly. Because affective
states are internal and involve cognitive thoughts as well as physical changes,
they cannot be fully recognized by anyone but the person having the affec-
tive state. Outsiders only have access to observable functions of the affective
state—expressions, behaviors, and so forth. Given reliable observations of
these functions, then the underlying states may be inferred. Hence, the ex-
pression “recognizing emotions” should be interpreted as “inferring an emo-
tional state from observations of emotional expressions and behavior, and
through reasoning about an emotion-generating situation.” In particular, the
pattern recognition tools in this chapter focus on modeling patterns of ex-
pression and behavior. The next chapter addresses models that can be used
for reasoning about situations.

Despite its immense difficulty, emotion recognition is easier than thought
recognition. Consider the party game of charades, where a player tries to
get his team to guess a word or phrase—typically a person, place or thing—
without providing any spoken or written clues. The fun and challenge involve
trying to act out situations so that the team can guess the correct word or
phrase quickly. Now, imagine if the game was limited to guessing emotions.
In that case the player would no longer need the elaborate gestural syntax
that the game has evolved (“3 syllables, name of a book, sounds like,” etc.)
and for most emotions the game would cease to be a challenge. Recognition
of emotion is easier than recognition of thoughts largely because there are
not as many emotions as thoughts. In pattern recognition, the difficulty
of the problem almost always increases dramatically with the number of
possibilities. The number of possible thoughts you could have right now
is virtually limitless, nor are thoughts easily categorized into a small set of
possibilities. Thought recognition, even with increasingly sophisticated brain
imaging techniques, is arguably the largest recognition problem in the world.
In contrast, a relatively small number of categories for emotions have been
commonly proposed. The smaller set of categories permits a smaller language,
making emotion recognition easier than thought recognition.

Basic Emotions and Discrete Categories

Theorists have long discussed a small set of categories for describing emo-
tional states. In 1962 Tomkins suggested that there are eight basic emotions:
fear, anger, anguish, joy, disgust, surprise, interest, and shame (Tomkins,
1962). Plutchik later distinguished among a different eight basic emotions:
fear, anger, sorrow, jov, disgust, surprise, acceptance, and anticipation (Plut-
chik, 1980). More recently, Ortony, Clore, and Collins have collected a sum-
mary of lists of basic emotions (Ortony, Clore and Collins, 1988). From these
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lists, the most common four emotions (combining near synonyms, like joy
and happiness) are fear, anger, sadness, and joy. The next most common two
are disgust and surprise and, after these six, the lists diverge. Over the years,
various researchers have proposed that there are from two to twenty “basic”
emotions.

“Basic emotions” may be defined in many ways. Perhaps the most thorough
definition has been given by Paul Ekman, who has linked basic emotions
to those which have distinctive universal facial expressions associated with
them, as well as eight other properties (Ekman, 1992, 1992a). By these criteria,
Ekman identified six basic emotions: fear, anger, sadness, happiness, disgust,
and surprise. Basic emotions can also be deduced by analyzing words for
emotion, an approach taken by Johnson-Laird and Oatley on 590 English
terms describing emotions, which concluded that the words could be based
on one or more of five basic emotions: fear, anger, sadness, happiness, and
disgust (Johnson-Laird and Oatley, 1989).

Whether or not basic emotional states exist is disputed by some authors,
and is a topic of long-standing debate in the emotion theory literature
(Ortony and Turner, 1990; Stein and Oatley, 1992, Panksepp, 1992). Some
emotions show up universally, and others seem to involve cultural specifics.
Universality poses only a slight problem to computers trying to recognize
emotions, which [ will address briefly below. Affective computing, fortu-
nately, does not hinge on the resolution of whether or not there are basic
emotions. Rather, the topic concerns us primarily as a problem of represen-
tation: should emotions be represented as discrete categories, or otherwise?

Emotion Spaces and Continuous Dimensions

Some authors have been less concerned with the existence of eight or so basic
emotions and instead refer to continuous dimensions of emotion (Schlosberg,
1954). Three dimensions show up most commonly, although only the names
of the first two are widely agreed on. The two most common dimensions are
“arousal” (calm/excited), and “valence” (negative/positive). These were the
axes illustrated earlier in Fig. 3.2, together with titles of pictures classified
in this continuous space, according to the work of Peter Lang. Lang has
assembled an international archive of imagery rated by arousal and valence
(Lang, 1995).

Numerous researchers have worked with dimensions of emotion instead
of with basic emotions or discrete emotion categories. Lang writes that self-
reports across subjects are more reliable with respect to dimensions than with
respect to discrete categories such as anger, fear, etc. (Lang, 1984). A number
of researchers have also proposed various mappings between continuous
dimensions of emotions and basic emotion categories. In the next chapter
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we will see several “cognitive appraisal” models that effectively do this,
stating criteria that partition a continuous space into ten or more discrete
outcomes. In general, two dimensions cannot be used to distinguish all the
basic emotions; for example, intense fear and anger lie in the same region of
high arousal negative valence. However, these two dimensions do account
for the most common descriptions of mood.

The lack of a definition of emotion, and the lack of agreement on whether
there are basic emotions or continuous spaces of emotions are obstacles to the
goals of computer-based recognition and synthesis. However, these obstacles
are not insurmountable. Similar hindrances occur in fields such as image
content analysis where, despite the difficulties, pattern analysis and learning
tools have proved helpful. Hence, it is reasonable to expect similar success
in modeling affective patterns. Moreover, the question of whether to try to
represent emotions with discrete categories or continuous dimensions can
be considered a choice, as each representation has advantages in different
applications. The choice of discrete or continuous states is, in one sense, like
the choice of particles or waves in describing light: the best choice depends
on what you are trying to explain. .

If desired, discrete categories of emotions can be treated as regions in a
continuous space. Categories may be “fuzzy” in the sense that an element can
belong in more than one category at once. For example, a feeling of sadness
can occur in both “grief” and “melancholy.” Researchers such as Paul Ekman
define affective phenomena that are not basic emotions, such as “grief,” to
be not emotions, but “emotional plots.” The plot of grief specifies two actors
with a prior relationship of attachment, a deceased and a survivor, and an
event of separation, followed by emotions in the survivor such as distress,
sadness, and perhaps fear or anger. Alternatively, one might consider grief a
cognitively-generated emotion, or perhaps a mixture of more basic emotions.
In the game of charades, basic emotions are easiest to portray, and emotions
like grief involve more effort.

The piano teacher application described in the opening chapter of this book
used discrete emotions, recognizing states of interest, frustration, and joy, to
allow the teacher to give more personal feedback. In contrast, an applica-
tion involving television news broadcasts is naturally suited to description
with the arousal and valence axes. A high-arousal story captures attention:
many people rush to the television to see the emotional gold-medal Olympic
victory. Extremely negative content has a powerful influence on memory, per-
haps in part because it is almost always also high arousal: many people have
a keen memory of the shock they felt upon hearing of John E Kennedy’s
death, or upon hearing of the space shuttle Challenger exploding. High-
arousal stories attract viewers; however, people tend to not want too much
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negativity, so it becomes important for broadcasters to try to find positive-
valence high-arousal content. Valence and arousal are critical dimensions in
entertainment, as well as in many other applications.

However, just because this representation is useful in this application does
not imply that all emotions are continuously valenced. Neither does success-
ful representation with a small set of discrete emotions imply that emotions
are discrete, or that there is only a small set of them. Both representations
have uses and limitations. Fortunately, we do not need consensus about one
representation being “right” to carry out the ideas presented below.

In summary, the recognition and modeling problems are simplified by ei-
ther the assumption of a small set of discrete “basic” emotions, or by the
assumption of a small number of dimensions. The fact that both yield a
concise representation is an advantage. Even if these are later found to be
an oversimplification, they at least form a good point to begin the mod-
eling effort. A small repertoire of emotions is characteristic in developing
humans—the younger baby has a smaller repertoire of emotions than does
a child, and the child a smaller repertoire than an adult. One can expect the
first affective computers to start with only a small number of categories or
dimensions.

Universal vs. Person-Specific

Much of emotion theory has been stymied on the issue of universality. If
there are emotions that occur with similar physiological responses in all
humans, then what is this set of emotions and how can they be recognized,
regardless of race, gender, culture, etc.? Like many questions in emotion
theory, the study of this one is complicated by factors such as how emotion is
defined, elicited, expressed, and communicated. Different languages do not
necessarily use the same words for describing emotive phenomena, which
further complicates attempts to demonstrate universality.

One of the potential benefits of affective computing lies in its ability to
make measurements and analyze patterns of affective signals, conditioned on
individuals and on circumstances affecting them. Given similar conditions,
measurements, and patterns of responses, conclusions can begin to be made
about the universality of various kinds of affective expressions. Hence, the so-
lution proposed by affective computing is, first, person-specific—measuring
data for individuals of all kinds, and, second, universal—examining the in-
dividual data to see what common patterns are present.

Common patterns are expected for universal emotions, and may differ
slightly for emotions that are variations on these. For example, over 60
expressions of anger have been found, but all members of the anger family
include two features: the brows are lowered and drawn together, the upper
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eyelid is raised and the muscle in the lips is tightened. Variations on this basic
anger expression are hypothesized to reflect whether the anger is controlled,
spontaneous, simulated, and so forth (Ekman, 1992). Because these variations
tend to occur with different frequencies in different individuals, and because
they may invoke various other individual responses, perhaps reinforced by a
person’s local environment, they can take on additional flavors, much like a
language evolves into dialects. Individual factors such as temperament affect
thresholds of expression, as well as other physiological characteristics. Just
as speakers of the same dialect have individual variations, we can expect
temperamental variations in emotional expression.

Pure vs. Mixed

After Uta Pippig won the 100th Boston Marathon, she described feeling
tremendously happy for winning the race, surprised because she believed
she would not win, somewhat sad that the race was over, and a bit fearful
because during the race she had acute abdominal pain. We say she had “mixed
emotions.” However, emotion theorists do not agree on what it means for
emotions to mix. Do they mix together like paints, like chemical compounds,
or perhaps according to some mathematical function? :

Here are two metaphors for how emotions might be “mixed”: first, a
microwave oven, and second, a tub of water. Microwaves usually have two
pure states: “on” and “off.” When you set the oven to cook at high then
the oven is on constantly. When you set the oven to cook at medium, then
the oven cycles between “on” and “off” to produce a slower heating effect.
The state “medium” is created by juxtaposing pure states “high” and “off”
in time—mixing in time—even though at any instant of time the oven is in
only one state. A different case of mixing is illustrated by a tub of water. If
you enjoy a warm bath, then you do not do so by jumping in time back and
forth between a tub of cold water and a tub of hot water, but you mix the
cold and hot water in the same tub. This kind of mixture allows the states to
mingle and form a solution that has a new state—warm.

When examined over a long time scale, both the microwave and the tub
result in a mixture state, “warm.” However, in the microwave, one can argue
that the purity of the states is preserved—you just have to look (or sample
the data) quickly enough to detect them. In contrast, in the tub the purity of
the cold and hot states is replaced by a warm state. For emotion mixing, both
metaphors are useful. For example, Clynes has found in sentograph mea-
surements of finger pressure that an expression of melancholy begins with a
form that looks like love and ends with a form that looks like sadness (Clynes,
1977). In other words, the mixture emotion of melancholy is described as a
juxtaposition of two forms in time, as in the microwave metaphor. On the
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other hand, most theorists have proposed scenarios that are closer to the tub
metaphor, with examples such as feeling “wary,” which is hypothesized to
be a mixture of interest and fear.

“Love-hate” relationships are an example where feelings of love and hate
cycle in time. The result is not a simple sum of the two emotions, or a feeling
that is in-between love and hate, but a rapid switching between the two in
time. In fact, for certain pairs of emotions such as love and hate, or perhaps
sadness and joy, it may not be possible for them to truly co-occur at the same
time. Instead, it may be that their polarity limits their mixing to be like that
of the microwave, one on and the other off, with mixing only in time.

All mixed emotions need not mix in the same way. In fact, this is a logical
prediction based on the way emotions coincide with different patterns of
bodily responses, and arise with different mechanisms. To the extent that two
emotions have non-overlapping generative mechanisms, and their bodily
patterns can mingle, then they can coexist in time. But if they require the
same generative mechanisms, then only one of them can be generated at a
given instant. Alternatively, two emotions generated by the same mechanism
may have different lengths of decay. If the second is initiated before the first
decays, this can give a different kind of overlap in time. However, given
that emotions are short events, this overlap should not be significant. With
this reasoning one can predict that a primary emotion like fear, generated
initially in the amgydala, could coexist with a cognitively-generated state
like anticipation, although extreme fear is likely to temporarily override any
cognitive emotions.

Cognitive events can interfere with the purity of emotions. If you are deeply
involved in playing a mournful piece of music, you may attain and express a
pure state of sadness. However, if your mind wanders to a happy event that
you are looking forward to after the concert, then the mournfulness of your
playing will not be as pure. This kind of mixing, like the microwave cycling
off and on, dilutes the expression of an emotion.

Emotions and cognitions can inhibit other emotions. An intriguing experi-
ment on lying and emotional expression illustrates this inhibition. Thirty-one
subjects were asked to express anger or love, using a sentograph. The device
recorded two significantly different kinds of essentic forms corresponding to
the two emotions. Next the subjects participated in several trials that required
them to lie at various points about cards they were holding in their hand.
When lying while expressing anger, no significant changes were found either
in the subjects’ self reports of anger, or in their recorded expressive wave-
forms of anger. However, when they were asked to lie while expressing love,
not only were their self reports of love significantly lower, but their essentic
waveforms for love were significantly altered (Clynes, Jurisevic, and Rynn,
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1990). This suggests that certain cognitive events such as lying can inhibit
certain emotional expressions (love), and not others (anger).

How does sentic modulation change as a person suppresses one strongly-
felt state and tries to feel another? Could measurements of affective patterns
help people identify an emotion they are masking, such as when anger is
expressed to hide fear? Questions such as these can be addressed by the tools
presented here. Using a computer with the ability to record and analyze
observations that correlate with affective states should aid investigators in
understanding these connections between emotions and their expression.

Imagine an actor who feels angry the night of a show, but has to play the
role of a joyful character. In order to deliberately express joy he suppresses
his anger, or overrides it with joy. If he is successful onstage in communi-
cating joy, has he merely “forgotten” his anger, so that it will return after
he has finished his time on stage? Or is there a therapeutic effect that takes
place? Measurements of his emotion before, during, and after the perfor-
mance could be studied both for understanding purity of emotions and for
understanding their therapeutic effects. The measurements could be com-
bined with reports from both the actor and audience, to gather their subjec-
tive (cognitive/perceptual) evaluations for synchronization with the bodily
measurements.

If the actor has merely “forgotten” his anger, then this suggests a cognitive
act, which has to occur both consciously and subconsciously so that the
bodily response disappears. Otherwise, the audience will still see conflict in
the actor, instead of joy, and think him to be a bad actor. The actor who
is angry and tense in his body cannot merely think “smile” and appear
carefree and light. The will does not have a monopoly on memory; the body
also provides a short term memory. The muscles store tension; the posture
can remain uptight. The intensity of affective communication is not only
a function of thoughts, but a function of bodily modulation—voice, face,
posture, and more. As the actor deliberately brings all these modes into a
consistent expression, not only is his communication more effective, but he
moves himself closer to a pure state of emotion. The purer the emotional
state, the more powerful will be the ability of the actor to move the audience
to a similar state. Theories that examine the purity of emotions through their
power to be expressed bodily become empirically testable with an affective
computer that can model emotional states for synthesis and recognition.

Modeling Affective Patterns

Below I will give examples of computational models for the representation
of affective patterns, especially for facial expressions, vocal intonation, and
physiological signals that vary with affective states. Most of the models were
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developed for the purpose of recognizing affective expressions, although
some can be used for synthesis of expressions as well. All the models work
with present technology and would typically be implemented in software.
The models below tend to range from “low-level” to “mid-level,” mapping
emotions to signal patterns (expression generation or synthesis) and vice-
versa (expression recognition). Some of the models assume discrete emotion
categories, while others assume continuous dimensions of emotion. None of
them are “high-level” in that none consider the semantics of the situation
which might generate an emotional response in the first place (as necessary
in cognitive emotion generation). The models that exist currently for such
high-level processing are rule-based and connectionist models, which will be
presented in the next chapter.

A caveat is in order before proceeding: sometimes the term “model” refers
to a formula that is capable of fully explaining a phenomenon, both ana-
lyzing it and synthesizing it. In the richest sense, a pattern model can both
recognize and synthesize the pattern. The use of the word “model” in this
book is less narrow. Most of the models below cannot both synthesize and
analyze the affective patterns without further development. Some consist of
sets of features which discriminate expressions, but which cannot reliably
synthesize them. Others can synthesize certain affective expressions, but do
not provide parameters for recognition. Nonetheless, the term “model” is
used to describe a set of parameters and procedures that are useful for pattern
analysis, synthesis, or both.

There is a common misunderstanding that there is one right model of
something, and that if there is more than one model, then they cannot all be
right. On the contrary, experience has shown that the best choice of model
depends on the application, and that there can be many right models just as
there are many applications. Each model has its strengths and weaknesses,
and sometimes a skillful combination of models gives better results than any
single model. These principles have been found to be true in pattern modeling
for video and image (Picard, 1996) and can also be expected to hold for pattern
modeling of affective information. In other words, which computational
model is “best” depends on the specifics of the computer’s affective task, and
when these change, so does the model. Therefore, equipping a computer with
multiple models may be the way to get the best performance. Choosing which
models are best for an application is easier after seeing different examples of
each model’s performance. [ will therefore discuss many models below.

Recognizing and Synthesizing Facial Expressions

One of the postulates of affective computing is that computers can be given
the ability to recognize emotions as well as a third-person human observer.
Let us consider the special case of facial expressions. Recognizing a facial
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expression is not always the same as recognizing the emotion that generated
it; facial expressions are the most easily controlled of all the expressions.
However, because they are also the most visible, they are very important, and
it is wise to observe them to assess what a person is trying to communicate.
Some of the examples below involve models of facial expression which are
not restricted to recognition, but which may also be used for synthesis of
facial expressions.

Models for recognizing facial expressions have traditionally operated on a
digitized facial image ora short digital video sequence of the facial expression
being made, such as neutral, then smile, then neutral. In general, recognition
from video is more accurate than recognition from still images. Video captures
facial movements that deviate from a neutral expression. Therefore, the
models below are based on recognition from video, although there has also
been work on recognition of facial expressions using still images.?

Facial expression recognition models to date have treated emotions as
discrete in the sense that they try to classify facial expressions into a small
number of categories such as “happy” or “angry.” The underlying theory that
links the expressions to these categories was developed by Paul Ekman and his
colleagues, and is called the Facial Action Coding system (FACS). The FACS
system describes basic emotions and their corresponding sets of action units,
which are muscular movements used to generate that expression.?

Facial expression recognition from video involves capturing spatiotempo-
ral patterns of both local and global changes on the human face, and relating
these patterns to a category of emotion. In the recognition examples that
follow, two main assumptions are made: (1) there are a small number of
discrete categories of emotional expressions; (2) data in the experiments is
“pure” in the sense that a user willingly or naturally tried to express exactly
one emotion. The first assumption makes this a supervised pattern recogni-
tion problem, with a priori specified categories of what can be recognized.
The second assumption is perhaps the most problematic, as it cannot be ver-
ified. There is no guarantee that the facial expression recognized as “sad”
corresponds to any genuine affective state of sadness.

None of the methods I describe claim to recognize the underlying emotion,
but only the expression on the user’s face. In other words, they would
recognize your smile even if it is a forced smile when you are not feeling
happy. They are currently not good enough to tell a false smile from a genuine
smile although, to my knowledge, people have not tried very hard to get a
computer to discriminate these cases, and a computer could be capable of this
discrimination. Vision-based facial expression recognizers would also fail to
recognize a state of joy if the joyful person suppressed all facial expressions.
However, the models here have made strides in recognizing facial expressions,
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which is a significant step toward giving computers the ability to recognize
emotions.>

Irfan Essa of the Georgia Institute of Technology and Alex Pentland of the
MIT Media Laboratory, have augmented Ekman’s FACS system to address
two of its limits: (1) action units are purely local spatial patterns; in con-
trast, real facial motion patterns are almost never completely localized and
can include coarticulation effects, and (2) most facial actions occur in three
phases: application, release, and relaxation, while FACS does not include such
time components. In extending it to non-local spatial patterns and to include
temporal information, they have enabled computers to recognize facial ex-
pressions from video (Essa and Pentland, 1997). The representation they use
is based on representing facial motion dynamics during expression. It can
also be used to synthesize facial expressions (Essa, 1995). The model con-
tains both geometric information about facial shape and physical knowledge
of tacial muscles. It begins by fitting a representation of finite elements to
the facial geometry, which then interacts with facial muscles to allow ex-
pressions to be synthesized according to the muscles that they involve. To
synthesize an expression, values of parameters of the finite element represen-
tation for the desired expression need to be determined. These parameters can
be calculated by analysis of a video of an expression. The parameters derived
from the video sequence correspond to a pattern of peak muscle activations,
which are mapped to an emotion category. The facial recognizer typically
takes five minutes to process a facial expression (on an SGI Indy R4400) and
has a demonstrated accuracy of 96% in recognizing six facial expression cat-
egories (anger, disgust, happiness, surprise, eyebrow raise, and neutral) for a
group of eight people who deliberately made those expressions.

If faster recognition is needed, then a second, non-physically based model
can be used, forming templates of facial motion energy (Essa and Pentland,
1995). The templates are default patterns characterizing the movement at
each point between pairs of frames in the video while an expression is
made. For the categories of anger, disgust, happiness, surprise, and neutral,
recognition rates are as high as 98% in a test involving eight people. Studies
are underway to determine how the recognition rate changes when there are
more people. The recognition does not work in real time yet; it takes a few
seconds to recognize each expression. However, with advances in hardware
and pattern recognition, the recognition should become fast enough for an
interactive response in the near future.

A different model for facial expression recognition, developed by Yaser
Yacoob and Larry Davis of the University of Maryland, also relies on templates
of motion energy, but uses a combination of templates and smaller sub-
templates (e.g., of just the mouth area) and combines them with rules to
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Figure 6.1

Facial expression recognition and motion energy maps. Top row: snapshots of the neutral
and four other expressions: happiness, surprise, anger, disgust. Bottom row: templates
of energy of the facial movement, as different from the neutral expression. The brighter
regions correspond to higher energy. (Photographs courtesy of Irfan Essa, Georgia Institute
of Technology, copyright 1997.)

formulate expressions (Yacoob and Davis, 1996). For example, templates are
extracted of the eye and mouth area, and anger is characterized by inward
lowering motion of the eyebrows coupled with compaction of the mouth.
This method has been tested on expressions of fear, anger, sadness, happiness,
disgust, surprise, and eye blinking, as made by 32 people, for a total of
116 expressions and 106 blinkings in the test set. The recognition accuracy
over this database was approximately 65% for blinking, and approximately
80% for the affective expressions. This method is also not real-time, because
computing the motion flow is slow. Yacoob, working with Michael Black of
Xerox PARC, has developed a similar method that additionally uses camera
motion tracking to help recognize expressions in videos of television talk
shows, news, and movies (Black and Yacoob, 1995).

The above models use pattern recognition and image analysis, and inherit
the current weaknesses of these tools. Most of the methods are sensitive to
scene lighting, requiring it to be relatively uniform. All require the person'’s
head to be easily found in the video sequence. Finally, continuous expression
recognition, such as a sequence of “smile, frown, surprise,” is not handled
well; instead, the expressions must either be manually separated, or inter-
leaved with some reliably detectable cue such as a neutral expression, which
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has essentially zero motion energy. Continuous expression recognition is
difficult in the same sense that continuous speech recognition is difficult—
finding the word boundaries, or in this case the expression boundaries, needs
to happen simultaneously with identification of the expressions.

When the computer synthesizes a smiling face, the computer may or may
not also activate an internal affective state. The way this activation works in
people is unknown, but it is true that expression of emotion plays a role in
activation and regulation of emotional feeling. A facial expression can elicit
an emotion in the person making the expression (Izard, 1990; Ekman, 1993),
as well as in the recipient of the expression. When the computer recognizes
a smiling face, it is possible to have this recognition influence the generation
of an internal affective state—a sort of “emotion contagion” that could be
given to computers.

The relation between temperament and facial expression has not been
addressed by any of the facial expression recognition models. Facial expres-
siveness, like other forms of sentic modulation, is influenced by a person’s
innate physiology, which is related to temperament. In studies of inhib-
ited versus uninhibited children, the inhibited ones have lower overall facial
expressiveness—presumably a consequence of their tendency toward greater
muscle tension (Kagan, Snidman, Arcus, and Reznick, 1994). Hence, their
“baseline” facial dynamics operate over a smaller range. For optimal perfor-
mance, computer systems that recognize facial expression would first have
to calibrate the subject’s expressive range, a form of “getting to know” them,
before these systems could become adept at recognizing their expressions.

Synthesizing and Recognizing Affective Vocal Intonation

Traditional efforts in computer-based speech recognition have focused on
recognition of what is said. More recently, efforts have also been made to
teach computers to recognize who is speaking. Usually the subtle qualities of
how something is said have been treated as noise for the first two problems.
In contrast, humans learn to identify who is talking and how something is
said long before they can recognize what is said.

The vocal intonation of how something is said breaks down into two com-
ponents: cues emphasizing which content in the message is most important,
and cues arising from the speaker’s affective state. Affective cues can convey
the most important aspect of what is said, such as whether the speaker liked
something or not. Vocal inflection adds flavor to our speech and content to
its message. Even in telling a joke, everyone knows it’s how you tell it that
greatly determines its success.

Characterizing affect in speech may be harder than characterizing affect
on faces. Facial signals communicate personal identity and expression, but
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Table 6.1

Summary of human vocal effects most commonly associated with the emotions indicated.
Descriptions are given relative to neutral speech. (Adapted with permission from Murray
and Arnott (1993), Table 1. Copyright 1993 Acoustical Society ot America.)

Fear Anger Sadness Happiness Disgust
Speech much slightly slightly faster or very much
rate faster faster slower slower slower
Pitch very much very much slightly much very much
average higher higher lower higher lower
Pitch much much slightly much slightly
range wider wider narrower wider wider
Intensity normal higher lower higher lower
Voice irregular breathy resonant breathy grumbled
quality voicing chest tone blaring chest tone
Pitch normal abrupt on downward smooth wide down-
changes stressed inflections upward ward terminal

syllables inflections inflections

Articulation precise tense slurring normal normal

do not generally communicate a linguistic message. On the other hand, the
speech signal contains a mixture of information, including cues to speaker
identity, affect, and lexical and grammatical emphasis for the spoken mes-
sage. Isolating affective information is complicated. Nonetheless, comput-
ers are slowly achieving progress in synthesizing and recognizing affect in
speech. Examples illustrating progress are provided in this section, although
for further information the reader may refer to the overviews of the principal
findings on human vocal emotion (Murray and Arnott, 1993; van Bezooyen,
1984). Table 6.1 summarizes the vocal effects most commonly associated with
five basic emotions.

The basic problem that needs to be solved is: what is a good computational
mapping between emotions and speech patterns? Specifically, we need to find
features that a computer can extract, and models it can use to recognize and
synthesize atfective inflection. These features are generally derived from ob-
serving how voices change with emotions. When a speaker is in a state of fear,
anger or joy, then his speech is typicallv faster, louder, and enunciated, with
strong high-frequency energy. This is primarily due to arousal of the sympa-
thetic nervous system, increasing heart rate, blood pressure, mouth dryness,
and certain muscle activation. When the speaker is bored or sad, then his
speech is typically slower and lower-pitched, with very little high-frequency
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energy. This is primarily due to arousal of the parasympathetic nervous sys-
tem, decreasing heart rate and blood pressure, and increasing salivation. In
other words, the effects of emotion on speech show up primarily in its fre-
quency and timing, with secondary etfects in its loudness and enunciation.
The effects of emotion therefore tend to show up in features such as aver-
age pitch, pitch range, pitch changes, intensity contour, speaking rate, voice
quality, and articulation. However, these effects are complicated by prosodic
effects that speakers use to communicate grammatical structure and lexical
emphasis; both effects influence several of the same features.

Speech, like other forms of sentic modulation, is influenced by factors such
as temperament and cognition. In studies with inhibited versus uninhibited
children, those who were inhibited spoke with less pitch period variation in
their voices, most likely because of their tendency toward increased muscle
tension, as was also correlated with lower facial expressiveness (Kagan, Snid-
man, Arcus, and Reznick, 1994). For optimal performance, computer systems
that recognize affect in speech would first have to learn the subject’s vocal
range, and then analyze with respect to this range. People are also capable of
controlling their speech inflection willfully, although vocal expressions are
harder to control than facial expressions. For example, the ability to mask
nervousness in public speaking is important—many great speakers admit to
being nervous, but they are able to learn to relax their voice in such a way that
the nervousness is not heard. The models described below do not incorpo-
rate the influences of variables such as temperament, cognitive suppression
of emotion, or linguistic content; however, they are pioneering in their at-
tempts to begin to learn mappings between acoustic features and affective
states.

The first model was constructed to address the question: Can recognizable
affect be generated in computer-synthesized speech? To answer this, Janet
Cahn, at the MIT Media Lab, built the “Affect Editor,” a computer program
that takes an acoustic and linguistic description of an utterance and generates
synthesizer instructions for a DECtalk3 synthesizer to produce speech with
a desired affect (Cahn, 1990). She identified values of seventeen parameters:
six pitch parameters, four timing parameters, six voice quality parameters,
and one articulation parameter, which produced speech that sounded scared,
angry, sad, glad, disgusted, and surprised. The seventeen parameters were
used to control a wide variety of affects—not just for strongly distinguishable
emotions, but also for subtle differences, with variations for individuality. To
synthesize speech, Cahn’s model cooperates with models of the other com-
ponents of speech to drive a synthesizer. This involves not just the seventeen
parameters above, but also an analysis of the syntactic and semantic clauses
of the utterance in an effort to identify good locations (e.g., pitch accent and
pause locations) for applying both lexical and non-lexical effects.
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To test this model of affective speech synthesis, the parameters were used
to synthesize five different neutral sentences, such as “I saw your name in the
paper.” Each sentence was synthesized with six different categories of emo-
tional expression. Listeners were asked to choose whether the speech sounded
scared, angry, sad, glad, disgusted, or surprised. In listener studies, the emo-
tion of sadness was correctly recognized 91% of the time. The other emotions
were correctly recognized approximately 50% of the time, and mistaken for
similar emotions 20% of the time (e.g., disgust was mistaken as anger; scared
was mistaken as surprised). The 50% performance was significantly better
than the 17% level of chance. Also, the sentences had no explicit context
attached, so their content should not have aided the listeners in recognizing
the emotion.

Despite the promising results that have been obtained, many research
questions remain. For example, the seventeen affect parameters discussed
above need more investigation as to how they should co-vary instead of being
set independently. Also, their reliability and generalizability are not known
beyond the scope of small studies. In particular, the mappings between
emotions and vocal features in humans will vary depending on the context.
Sometimes an angry person will raise her voice, and sometimes she will lower
it. Determining all the possibilities is an open research problem.

As mentioned earlier, people like Stephen Hawking who rely on speech
synthesizers could benefit not only from computer voices that can express
emotion, but also from computers that could recognize their emotion. Such
systems could automatically set the intonation parameters for the synthetic
voice. To date, there is no system that takes what a speaking-impaired person
is feeling, and has the feelings automatically generate the right settings
for their speech synthesizer. Instead, the speaker has to adjust the affect
parameters by hand. Nonetheless, the development of affect control knobs
for speech synthesis is a step toward this goal.

The Affect Editor can take an input sentence in typed form and synthesize
it with a specified affect in acoustic form. But what about the inverse problem,
analyzing the affect in a spoken sentence? In Clarke’s science fiction novel
2001, we read that the computer HAL could discern the astronaut Dave’s
emotions by analyzing his voice harmonics. Will computers be able to do
this any time soon? The task is very difficult, especially given that humans
are not reliable at recognizing affect in voices. Humans, on average, can
recognize affect with about 60% reliability (Scherer, 1981) when tested on
neutral speech or on speech where the meaning has been obscured. In the
neutral speech studies, people can usually distinguish arousal in the voice
(e.g., angry vs. sad) but they frequently confuse valence (e.g., angry vs.
enthusiastic). In ordinary conversation, however, a sentence and situation
are rarely neutral; the context provides powerful cues to disambiguate the
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thought

Figure 6.2

Voice inflection synthesis. The same sentence, “I thought you really meant it,” synthesized
for two emotions: sad and annoyed. For each emotion the pitch track (top) and spectrogram
(bottom) are shown. Notice the bigger pitch range for annoyed, as opposed to the relatively
compressed range for sad. The spectrograms also show differences in speed, pause locations,
and enunciation of the two cases. (Spectrograms courtesy of Janet Cahn, MIT Media Lab.)

valence of a spoken message. In other words, the affective cues most readily
communicate arousal; the communication of valence is believed to be by
more subtle cues, intertwined with the content of the speech.

In efforts to give computers the ability to recognize affect in speech, a va-
riety of features have been proposed. Early studies found that the arousal
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dimension of emotion is communicated by pitch and loudness while va-
lence is communicated by subtler and more complex patterns of inflection
and rhythm (Davitz, 1964). Some of the earliest research in this area ana-
lyzed the voice signals of pilots in stressful situations talking to the control
tower (Williams and Stevens, 1969) and actors expressing emotions (Williams
and Stevens, 1972), where acoustic features such as the fundamental fre-
quency contour, average speech spectrum, precision of articulation, and other
temporal characteristics were used for discriminating certain affective states,
especially fear, anger, and sorrow. More recent research has shown a cor-
relation between rising arousal levels, from sorrow to anger or from severe
depression to recovery, and a rise in spectral energy in higher frequencies (up
to 4kHz); this research also links frequency ranges of long-term voice spectra
to the three dimensions of arousal, valence, and control (Pittam, Gallois, and
Callanite, 1990). In native Korean actors and French actors speaking neutral
sentences with the emotions anger, sorrow, joy, tenderness, and neutral, it
was found that arousal was easiest to recognize using the features of pitch
range, speech rate, and intensity, and that the duration of the last syllable of
a sentence showed promise for valence recognition. This syllable was found
to be short in anger and long in joy and tenderness (Chung, 1995). Similarly,
a measure of voice quality helped with valence—joyful and tender voices
are more resonant than angry or sorrowful voices, which are more aspirated.
Linear predictive coding parameters of speech together with speech power
and pitch information have also been used in conjunction with a neural net
to recognize eight categories—fear, anger, sadness, joy, disgust, surprise, teas-
ing, and neutral—in people interacting with an animated character (Tosa and
Nakatsu, 1996).

For training a personal software agent, one of the more useful recognition
tasks would be to have the computer recognize whether you liked something
or not. However, to date there are no reliable computational measurements
of acoustic features of valence. Deb Roy and Alex Pentland, at the MIT Media
Lab, have made a preliminary effort to enable computers to classify sentences
as approving or disapproving (Roy and Pentland, 1996). This effort used six
features—mean and variance of the fundamental frequency, variance and
derivative of energy, ratio of amplitude of first to second harmonic, and ratio
of first harmonic to third formant—to describe the two classes of approval
and disapproval with Gaussian models, and decided which class was present
based on Bayesian decision making, a standard method in pattern analysis.®
The resulting recognition accuracy was 65% - 88% for speaker-dependent,
text-independent classification of approving versus disapproving sentences.
The same sentences were also judged by people as approving versus disap-
proving, with similar classification accuracy. The reliability differed from
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speaker to speaker; the computational model successtully recognized the ap-
proval/disapproval of subject A more easily than B more easily than C, and
this pattern of success was duplicated for humans trying to recognize the ap-
proval/disapproval of subjects A,B,C. Although this study is very limited, its
focus is noteworthy, as indications of approval/disapproval are clearly impor-
tant to young children, especially pre-verbal infants, and play an important
role in learning of right and wrong. If a computer is trying to learn to adapt
its behavior to its user, then an ability to sense approval or disapproval from
that user would aid in this process.

Studies of affect recognition are complicated by many issues. One compli-
cation is how to mask the content of the speech: Play it backwards? Filter it to
obscure what is said? Most studies try to get around this problem by choos-
ing sentences with neutral content (e.g., “What time are you leaving?”) but
there is no guarantee that the content will be received as neutral by the sub-
ject. Researchers who work on this should be aware of the pitfalls of various
methods for masking sentence content (Scherer, Ladd, and Silverman, 1984).
Another potential complication, which apparently none of the studies have
considered, is that the mood of the subject assessing the speech may influence
the results. As described earlier, studies show that human perception is biased
toward positive or negative depending on a subject’s mood. In particular, sub-
jects resolve lexical ambiguity in homophones in a mood congruent fashion
(Halberstadt, Niedenthal and Kushner 1995), and subjects who look at am-
biguous facial expressions judge them as having more rejection/sadness when
the subject is depressed, and less invitation/happiness (Bouhuys, Bloem, and
Groothuis, 1995). Hence, we can expect that choosing a sentence (or other
stimulus) with neutral content and ambiguous affect will tend to be perceived
with negative affect by a person in a negative mood, and vice-versa for a per-
son in a positive mood. In other words, the mood of the subjects should be
taken into account during recognition experiments.

Combinations of Face and Voice
The above sections gave examples of models for synthesis and recognition
of affect both in facial expressions and in voice. The reported results are all
preliminary in the sense that they need independent confirmation and would
benefit from larger numbers of subjects and expressions, both vocal and
facial. Nonetheless, initial results are promising, as all the studies have shown
better than random recognition rates and have not revealed any fundamental
reasons why affective expression cannot be recognized or synthesized by
computers.

A promising area of research is that of combining facial expression and
vocal expression to improve recognition results in both domains. The combi-
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nation of the two is complimentary, given that arousal is more easily discrim-
inated in speech, and valence is more easily discriminated in facial expres-
sions. Studies on facial expression recognition have mostly been performed
only on faces that are not also talking, because the mouth moves differently
when someone is simultaneously expressing a facial emotion while speaking.
The combination remains a challenge for researchers.

Humans have access to both visual and auditory channels in natural un-
mediated communication; consequently, it is no surprise that these channels
might specialize in ditferent aspects of expression. For example, in the famous
McGurk effect, listening to an acoustic “ba” and visually lip-reading a “ga”
vields an overall percept of “da” (McGurk and MacDonald, 1976). Neither
the visual nor the acoustic signal alone is adequate. The fact that we rely
upon both, simultaneously, suggests that it is especially important that face
and voice channels be well synchronized in a videoteleconferencing system.
When the synchronization is right, then videoteleconferencing is a much
richer form of communication than a phone call. Part of the increased value
of a ticket close to the stage at a concert or theatre production is the ad-
vantage of being able to simultaneously hear the performers and see their
facial expressions. In people, the combination of visual and auditory abili-
ties provides richer and more accurate communication; it should also lead to
improved performance for computers trying to recognize human affect.

Physiological Pattern Recognition

Patterns of features extracted from physiological signals can be used by a
computer to recognize affective information. The idea is to have the computer
observe multiple signals gathered while a person is experiencing an emotion,
like the ones shown in Fig. 5.7 for grief and for anger, and learn which patterns
of physiological signals are most indicative of which affective state. Later,
when the system is given only raw signals from a person, then it can use
what it has learned previously to try to recognize which affective state most
likely gave rise to the signals. Research on this kind of recognition is nascent,
but let me illustrate one example of its use with some experiments conducted
by Elias Vyzas, working with me at the MIT Media Lab.

In this example, we are given four raw physiological signals—EMG, BVP,
GSR, and Respiration—from an actress expressing eight emotions each day.
Each emotion was expressed repeatedly over several minutes, with the aid of
a sentograph. From each signal, only 100 seconds of the data are used in the
experiments below, and this data was taken from the middle of the period
of expression. The eight emotions she expressed were: no emotion, anger,
hate, grief, platonic love, joy, romantic love, and reverence. These 32 signals
were gathered every day for twenty days. Step 1 in analyzing the signals is to
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normalize a signal by subtracting its mean and dividing it by its standard
deviation, so that every emotion signal on every day has zero mean and
unit variance. Step 2 involves computing features of the raw and normalized
signals. The decision of which features to compute is mostly an art, since there
are an unlimited number of possibilities and much more research is needed
to determine which features are best for affect recognition. For this data, we
extracted six features: the mean, standard deviation, mean of the absolute
value of the first difference, and mean of the absolute value of the second
difference, all computed from the raw signals, and the latter two features
again, this time computed from the normalized signals. This results in six
features for each of four signals per emotion per day. In other words, each
emotion on each day is represented by 24 features, or by a point in a 24-
dimensional space. Collecting data over 20 days, we obtained 20 such points
to characterize each emotion.

[t is often useful to look at subsets of the data to try to determine which
features give the best discrimination. After trying all possible triplets of emo-
tions and pairs of features, the system finds that the best classification results
for this data are obtained when trying to discriminate within the triplet anger,
grief, and reverence, or within the triplet anger, joy, and reverence.’” In both
cases, one feature from the EMG signal—the mean of the raw signal—was
one of the two best features for classification. However, the best choice for
the second feature varied. For the triplet of anger, grief, and reverence the
mean of the absolute value of the first difference of the normalized respira-
tion signal gave the best result. For the triplet of anger, joy, and reverence,
the same feature but computed from the EMG gave the best result. Figure 6.3
(top) illustrates the 20 points for each of three emotions, where each point
is plotted according to the two best features. For the anger, grief, reverence
triplet, the recognition accuracy is 72%, and for the anger, joy, reverence
triplet the accuracy is 70%. Both are significantly higher than the score of
33%, which would be expected with random guessing.

Using a classic tool of pattern recognition, the Fisher Projection, applied to
a subset of the twenty-four original features, we obtained even better results,
with 83% classification accuracy for both triplets. The better separation of
classes provided by this method can be seen in Fig. 6.3 (bottom). Ideally,
the features used to represent each emotion will result in clearly separated
clusters for each emotion, although these clusters may need more than
two dimensions, and may therefore be much harder to visualize than the
examples shown here. In Fig. 6.3, the x, o, and + signals can be seen to
be separated better by the Fisher method (bottom) than by using the two
best features (top), although the Fisher method still leaves significant overlap
between the reverence and joy classes.
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Discrimination Using Only 2 Features
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Figure 6.3

Fach point represents the physiological signals from an actress expressing a state ot anger,
jov, or reverence. Top: The signals are shown represented by only the two features that were
found to best discriminate these three affective states. Bottom: A Fisher projection was used
to calculate two dimensions that discriminate these three states.

The six features extracted above were chosen somewhat arbitrarily, to cap-
ture variations in the signals that tend to be useful regardless of what the sig-
nals represent. In different applications, however, these features may change.
Salient features to use for recognizing a person’s relative stress and relaxation
levels may be different from the six features computed here. In pattern recog-
nition research on images, features representing texture, color, shape, and
motion tend to be some of the most useful. A difficult challenge for affec-
tive computing research is to determine which features of the physiological
signals are most important—to find what is the equivalent of color, texture,
shape, and motion in affect.

The four kinds of signals used in this example—EMG, BVP, GSR, and
Respiration—communicate different information, and it is an open research
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question to determine which combination of these, and other signals, pro-
vides the best indicator of affective state changes. For example, various exper-
iments have shown that certain patterns in a person’s electroencephalogram
(EEG) signals relate to approach vs. withdrawal, which might be used to dis-
tinguish affects such as like vs. dislike (Davidson, 1994). However, wearing
EEG sensors is not vet as easy as the sensors used in this example.

This example illustrates how features of physiological signals can be com-
bined with pattern recognition tools to provide cues about a person’s affective
state. In particular, combining information sensed from a user in this way,
with both expressive and contextual information from cameras and micro-
phones, provides a rich opportunity for acomputer to understand more about
its user’s affective responses. However, much more research is needed to deter-
mine which physiological signals, and which features of these signals, provide
the most useful information for the states of interest in the human-computer
interaction.

Models for Affective Behavior
The discussion so far has focused on the use of pattern modeling tools for
recognizing, classifving, and generating affective patterns, especially facial
expressions, vocal intonation, and physiological signals. The models in each
case have been used to map patterns and signals to emotion categories, a
low-to-medium level transformation. In this section, the emphasis is on mid-
level models for representing discrete emotional states. The assumption is
that these internal states are “hidden” and that what is not hidden are the
observations of sentic modulation, such as a facial expression, which tend
to be produced when a person is in these states. Models need to be capable
of recognizing that you might express an emotion through a combination of
modalities; you might sometimes frown when you are sad, but sadness might
also show up in your posture or voice. The model should learn probabilities
that given certain observations, a person is in a particular affective state.

Figure 6.4 shows an example of one possible model that meets these re-
quirements, the Hidden Markov Model (HMM). This figure shows only three
states, for ease of illustration, but it is straightforward to include more states.
For example, a fourth circle could be added for a baseline or neutral state of
“no emotion.” The premise is that you will be in one state at any instant, and
can transition between states with certain probabilities. In the example of the
computer tutor, we would expect the probability of the pupil moving from
an interest state to a joy state to be higher than the probability of moving
from a distress state to a joy state.

The HMM learns probabilities by training on observations, which could be
any measurements of sentic modulation varying with the underlying states,
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'he Hidden Markov Model shown here characterizes probabilities of transitions among
three “hidden” states: interest (1), distress (1), and jov (]). It also characterizes the likelihood
of certain observations given these states, such as how features of voice inflection, V, will
change with each state. The affective state of a person cannot be observed directly; only
observations that depend on a state can be made. Given a series of observations over time,
the computer tries to determine which sequence of states best explains the observations.

such as changes in voice inflection, facial expression, or autonomic changes
such as heart rate. The input at any time is these observations; the output can
be either the state that the person is most likely in, or it can be identification
of an entire HMM configuration, thereby recognizing a larger pattern of
emotional behavior. In the latter case, there would need to be a family of
HMM configurations, one corresponding to each emotional behavior, or each
person’s characteristics for a given behavior. For example, the computer tutor
might recognize different patterns for different pupils, which might help it
to tailor its feedback more effectively.

HMM’s work in multiple contexts. Different HMM'’s can be trained as func-
tions of environmental, cultural or social context. Your sentic modulation
patterns may differ if you're driving a car in the country on a Sunday versus
in the city at rush hour, going out with an old friend versus meeting a blind
date. The probabilities of certain expressions vary given different condition-
ing events. For example, the probability of showing facial expressions at the
office is smaller than the probability of showing them at home. Context can
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also include temporal events. Different HMM's may be learned as a function
of timing relative to a hormone cycle or to exam season. Hence, the prob-
abilities, states, and structure of the model vary depending on a variety of
factors, ultimately determined by the intended use of the model.

In any of these cases, the HMM states can correspond to pure emotional
states as illustrated in Fig. 6.4, or they can correspond to more fundamental
building blocks, perhaps identified by the computer as it works to fit the data.
The states do not have to have recognizable names of emotions; they might
instead correspond to regions of a dimensioned space where the person’s
sentic modulation measurements cluster. For example, one HMM state might
be made by noticing clusters of physiological variables that occur in particular
situations, and assigning each cluster to its own state. Alternatively, a complex
pattern of clusters might be represented by its cluster-based probability model
(Popat and Picard, 1993). In either case, the model is customized to an
individual, and can learn to represent unnamed feelings that happen reliably
in certain situations. Furthermore, the model can capture the dynamic aspects
of an emotion—associating a whole HMM to one emotion. The model is
free to adapt to new theories of emotional building blocks—whether at the
granularity of the basic emotions of anger, sadness, etc., or at a smaller
granularity from which dynamic emotions may be constructed.

HMM'’s are also suitable for representing emotion mixtures, following either
the bathtub or microwave metaphors used earlier. In the case of the former,
a state can be established as a mixed emotion; it can be constructed out of
several simultaneous components, as melancholy might be constructed out
of the components of love and sadness. In the case of the latter, pure states
can be alternately visited in rapid succession in time. An HMM for a “love-
hate” relationship would cycle between two or more states of love and hate,
perhaps occasionally pausing in a neutral state.

A model such as the HMM can be used not only to recognize certain
affective patterns, but also to predict what state a person is most likely to bein
next, given the state they are in now. The prediction process is one of partial
recognition: First, fit the model to both previous and present observations.
Second, use these results to synthesize the most probable state to occur next.
The synthesized state acts as the prediction. Like a human observer, such a
model-based prediction can give a likely outcome, but can never say with
100% certainty what will happen. When these models synthesize or predict
they do so only in a probabilistic way, not taking into consideration high-level
reasoning or logic. Consequently, they are not as well suited to predicting
emotions based on cognitive appraisals as some of the models I will describe
in the next chapter. Nevertheless, they are well-suited to describing patterns
of affective state transitions, and inferring hidden states given these patterns.



191

Recognizing and Expressing Affect

Additional Models and Learning

Numerous other models may prove to be useful in modeling affective infor-
mation. An artificial neural net is one general purpose tool which has already
been applied to emotion expression recognition, and which will be applied
to emotion’s influence on memory and performance in the next chapter. As
an aside, it is interesting to note that the most popular method used for train-
ing artificial neural nets, backpropagation, was originally inspired by the idea
of emotional energy being attached to associations. Paul Werbos writes that
he came up with the idea of backpropagation while trying to mathematically
translate an idea from Freud, who proposed that human behavior is governed
by emotions, and that people attach cathexis (emotional energy) to things
Freud called “objects.” Quoting from Werbos (1994):

According to his [Freud’s] theory, people first of all learn cause-and-effect associations;
forexample, thev may learn that “object” A is associated with “object” B at a later time.
And his theory was that there is a backwards flow of emotional energy. If A causes B,
and B has emotional energy, then some of this energy flows back to A. If A causes B
to an extent W, then the backwards flow of emotional energy from B back to A will
be proportional to the forwards rate. That really is backpropagation. . . . If A causes
B, then you have to find a way to credit A for B, directly. . . . If you want to build a
powerful system, vou need a backwards flow.

The use of some form of backwards flow is a significant part of most computer
learning methods today. It can be implemented without having to give the
computer an emotional system. Nonetheless, the mechanism is apparently
similar to the role that emotions play in human learning.

There are a host of other possible models that can be employed for ana-
lyzing and synthesizing emotional expressions. Camras (1992) has proposed
that dynamical systems theory be considered for explaining some of the vari-
able physiological responses observed during basic emotions, but has not
suggested any models. Emotion system dynamics might be captured by non-
linear models such as the M-Lattice (Sherstinsky and Picard, 1994) , a model
that generalizes certain kinds of neural nets. Grossberg and Gutowski (1987)
have proposed that emotional processing can be accomplished with an oppo-
nent processing neural network called a gated dipole. Freeman has modeled
olfaction with dynamical systems and argues the relevance of this approach
for modeling limbic influences on intention and motivation in his book Seci-
eties of Brains (Freeman, 1995). There are, no doubt, many more possibilities;
the field of research is wide open for exploring which models are best suited
to capturing the most useful features of emotions.

Note that no one model—discrete, continuous, implicit, emergent, lin-
ear, nonlinear, or otherwise—is likely to perfectly recognize an underlying
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emotional state. For example, tears may be recognized from a video image
of a face, but they don't necessarily correspond to sadness—they could be
tears of happiness. The most successtul recognition can be expected to occur
when a computer learns a personalized combination of low-level perceptual
cues, such as pattern recognition of visual, vocal, and other biosignals, and
high-level cognitive cues, such as reasoning that the viewed event satisfied a
long-term goal of the user, and might make her extremely happy. Addition-
ally, these cues will work best when considering the context; for example, is
it a poker game where bluffing is the norm, or a marriage proposal where sin-
cerity is expected? The important influence of reasoning, especially cognitive
appraisal of a situation, and the synthesis of so-called “cognitive emotions,”
is the subject of the next chapter.

This chapter has described models that can be used to start giving computers
the abilities necessary to recognize and express emotions. In particular, tools
from pattern recognition and analysis have been suggested for recognizing
and synthesizing facial expressions, recognizing and synthesizing vocal in-
flection, recognizing physiological patterns corresponding to affective states,
and modeling emotional behavior. Research in this area is very new, but re-
sults on small sets of emotions and small sets of people already indicates
that computers can achieve useful performance in recognizing and express-
ing affect.



