Chapter 3

System dynamics and world
models

System dynamics has its roots in systems of difference and differential equa-
tions (Forrester 1980: Section 3.3). A target system, with its properties and
dynamics, is described using a system of equations which derive the future
state of the target system from its actual state. System dynamics is restricted
to the macro level in that it models a part of reality (the ‘target system”) as an
undifferentiated whole, whose properties are then described with a multitude
of attributes in the form of ‘level’ and ‘rate’ variables representing the state
of the whole target system and its changes, respectively.
The typical difference equation has the form

Tiy1 = f(i-‘»':; V)

where 1z, is the state of the target system at time ¢ + 1, which depends on
its state at time t and on a parameter 1. Both = and ¥ may be vectors, that is,
consist of several elements. f is usually a continuous function. Only in rare
cases can the difference equation be solved explicitly to yield an expression
for z, as a function of t and z,.

The typical differential equation has the form

(3.1)

#(t) = 2 = g(a(0)9) (3.2)

where & (t) is the state change of the target system within an infinitesimally
short period of time dt. The amount of change depends on the state z(t) at

 P—

tme ¢ and on a parameter ¥, Again, both 2 and U may be vectors, and ¢ i
usually o continuous function, In simple cases, the differential equation can
b solved explicitly, yielding an expression for z(t) as a function of ¢.

Conceptually, there is a close relationship between difference and dif-
lerential equations. In the case of difference equations, equidistant points
ol time are numbered or labelled by ¢, and nothing is said about the time
uonle. Hence, we could introduce a new time scale 7, in which the distance
ol vonsecutively labelled or numbered points of time is A7. If the right-hand

wide of a difference equation can be written in the following form:
Ty = f(259) = 24 + g(24;9) (33)

meaning that the state at time ¢ + 1 is equal to the state at time , plus the

Whange of state, or with the explicit distance At between points of time,
Trrar = f(Tr;9) = T7 + AT - g(24,; V) (34

(which is always possible), then the following transformation can be per-

Trpar — T = AT -g(zr;70) (3.5)
U e P (6

Taking limits — that is, as A7 is reduced to an infinitesimally short period
W time (AT — 0) — we arrive at

lim
AT—0

z(t + A7) — z(7 dz

T80 -2ln) & s, = g (a(r)id)
~which is a differential equation. Note that the solution of a differential
pijuation will be different from the solution of the corresponding difference
juation. The simplest procedure for finding numerical solutions to differ-
dhtinl equations uses the similarity between the two types of equations and
i fixed At to approximate the differential equation. And this is exactly what
L slem dynamics does, too. Thus, system dynamics differs from systems of
srential equations mostly in two technical aspects: discrete time is used as
W vonrse approximation for continuous time to achieve numerical solutions;
i functions of all kinds, not just continuous functions, can be used.
System dynamics also provides the modeller with a graphical description
lunguage, the system dynamics diagrams that describe the interdependencies
cen the attributes of the target system. The graphical symbols — see
jure 3.1 — are taken from the world of streaming water or steam which

(3.7)
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flows between containers controlled by valves; heating 1s a favourite exut
ple for explaining the principles of feedback loops, and words referring |
bonding relations (Bunge 1979) are derived from words used for the sam Y
target systems in many languages (for example, ‘influence’, according 1 MO wan the first language especially designed for building system
Webster's Dictionary was originally ‘an ethereal fluid held to flow from tl; jon models, It is a functional simulation language that can handle an
stars and to affect the actions of humans’). y number of equations for:

vals - for example, L inventory.k=inventory. j
+dt*orderRate. jk

i

fgs ~ for example, R orderRate.kl=
Figure 3.1: System dynamics diagram (redrawn from Forrester 19801 3 (desiredInventory-inventory.k)/adjustmentTime

Fig. 2.22) unatants ~ for example, ¢ desiredInventory=6000
Ilizations for example, N inventory=1000

l ¢an also be used as a shorthand for complicated expressions, as
plc below (see p. 39).

ACjustEaL e ¢ the years, a number of DYNAMO-like simulation languages and
\\ tlon systems have been developed. The best known of them include:
Desired inventory N Professional DYNAMO Plus™;
K“_____- Order raté N1 ELLA, on'gjna_lly dcvcloped. t:or Macintosh,.and 1?1uch like l;)Y~
- —— ] (ow 8/ N/ MO, but with important addltlgnal features, including a graphical
S L uner interface (http://www.hps-inc.com/);
:  PowerSim (http://www.powersim.no or http://www.powersim.
f i 1 om) is also equipped with a graphical user interface and allows for all
| Inventory types of system dynamics modelling.
b S  VenSim (http://www.vensim.com) comes in a so-called ‘personal
"ilenming edition’ that ‘gets you started in system dynamics modeling’
(quoted from the website) as well as standard and professional edi-
fions which allow for more complex models as well as for sensitivity
‘unalyses.
Figure 3.1 shows the supply flow ( ) from the inexhaustible cloud 0 are several other packages running DYNAMO or DYNAMO-like
(source) into the ‘inventory’ through the valve ‘order rate’ which is con- m \es.
trolled (- — -) by the actual ‘inventory’, the ‘desired inventory’, and the A DYNAMO program consists of expressions that are bound to names.
‘adjustment time’. Figures of the same kind may also be used to visualize unes do not refer to memory locations where values of variables are
the control of more complex feedback loops, as in the case of models of todl, but refer to the expressions to which they are bound. The DYNAMO
the dynamics of the world system. Such complex target systems and their ipreter will evaluate expressions at the time they are first used and store
models show, however, that there are limits to the system dynamics diagram result of the evaluation for further use. This is why the order of equations
technique: a diagram measuring 60 cm by 40 cm with a barely decipherable ) DYNAMO program is arbitrary (although it is good programming style
legend (as on the back flap of Meadows et al. 1974) is hardly appropriate to lart with level equations and initializations of level variables, then place
communicate an overview. This is because a whole system dynamics model § equations just below, have equations for auxiliaries follow and end up

is represented by one single object with a vast number of attributes. 1l constants).



‘ and the law-abiding strategles,!
e dove never tries to get hold of others’ possessions, but waits until

e W

the 1o be mlua
inventory.k, the value fh . 10 L0y Wil assume at this polr
in time (which always Iu ml the siffix ). \ related expression fin Ahey are given up, and himself abandons his resource as soon as he is
contains inventory. J, the “l“‘ that the oy ol wunumed at the former poin ") ukud If two compete for the same resource, one of them gets it
in time (which is always marked by the suffix §) - this value will be knoy i augh persistence or luck) with equal probability.
from earlier computations and, if not, will be tuken from the initialization, Iy . hawk always tries to get hold of others’ resources by means of
this case the initialization expression inventory = 1000 will be evaluated - uppression and gives up only if he receives serious injuries.
to 1000, where this branch of the evaluation will terminate. The next ter Bhe law-abider never tries to get hold of others’ possessions, but waits
in'the: cxpression for tnventory kicoll [HCIINE ators, namebigdy !l'l "i.mtil they are given up, and he defends his possession by counterattack
orderRate. jk. dt means the length of one time step. The other factor “until he either succeeds or is defeated.
orderRate. jk is a rate to which a rate expression is bound. The suffix j R S
denotes the fact that orderRate. jk is the rate of flow between j and k b‘i state of nature, the human population consists only of hawks,
Thus, inventory.k can be assigned a value. i:_=_ abbes’ ‘Commonwealth’ only of law-abiders.

The next step in the evaluation is the rate orderRate. k1, the rate of ltl‘!tesles apphf:d !3}’ the mdwlc.iuals may spreac% all O_VET t‘he popula-
flow during the next time step (between k and 1). Expressions for rates may nheritance, imitation or education. In any case, in a situation c'ieﬁned
contain references to the values of levels because these are either known 10 distribution of strategiB_S, the most profitable strategy is transmitted to
or can easily be evaluated (as they must only depend on former values I members of the population. :

-3 and . jk). Expressions for auxiliaries are evaluated in the same manner, 1o operationalize what a profitable strategy is, we have to make some
Auxiliaries, too, have a former and an actual value. | ptions about the ‘costs’ and ‘gains’ of strategies. .Wte assume that if an

At the end of all evaluations for one point in time, all values of levels, L dual following strategy t(a *'lﬂ‘f‘:'ks dove or law-abldlmg st;ategy) meets
auxiliaries and rates (with suffixes .k and .k1, respectively) replace the ndividual following strategy 7, i’s gain will be Tij (if 7y 1s neggt‘we, 7
former values (possibly after these have been written to some output file). ke 4 loss in the encounter). The values 7;; are given by the utility of
This means that at every point in time, only the rate and level values of Waession minus the costs of the fight. Let the utlllt).( of posse's‘smn be u
the immediate past are accessible and values about the earlier past are lost, ain in the DYNAMO model),‘and the costs of fighting or waiting be cy
Special functions (for example, the delay function) are necessary to model il ¢y (coha and codo), respectively, and let cp < u < cy.
influences from the remote past. ‘I'hus, when an individual applying the strategy of any row of the tallaic
meets an individual applying the strategy of any column, they receive
guins shown in the entries of the table (the first term is the gam of the
' individual, the second is the gain of the ‘column’ individual).

An example: doves, hawks and law-abiders

Dove Hawk Law-abider
A differential equation model . . . r : N
. b +%-ep u+E-—cp
Dove w = Cp; 5 —CD 0,u e S

For an introductory example we take a model that was described by Martinez YoCH L, M=cH g

Coll, who tried ‘to develop a formal model of the Hobbesian state of nature Hawk u,0 o 2 ' 2
from the perspective of bioeconomics’ (Martinez Coll 1986: 494). He de- . bid ut¥—cp 0+%—cp =oet0 T u u
fines Hobbes’ state of nature as a society whose members are continually baw-abider 2 02 TR &4

competing with each other to obtain a resource. All resources belong to
someone, thus conflicts arise between resource owners and those who want
an additional resource. Martinez Coll follows Maynard Smith (1982) in that
he endows the members of his model society with one of three strategies: the

Division by 2 is interpreted as follows:

~ IWe will return to a very similar model in later chapters of this book (Chapter 6, p. 123;
we ilso Werner and Davis 1997).
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e When two individuals applying the same strategy meet, each of them
has the same chance of winning or losing. For example, if two hawks
meet, one of them will get the resource (u), while the other will receive
serious injuries (—cg). Since both have the same chance of winning,
the expected outcome will be e

e When a law-abider meets another individual each of them may be the
lawful owner of the resource competed for. For example, if a dove
meets a law-abider and both compete for the same resource, then we
have two equally probable possibilities:

— If the law-abider is the lawful owner of the resource, it keeps the
resource (u), and the dove takes nothing (0).

— If the dove is the lawful owner of the resource, both have to wait
until one of them gives up (—cp) and then one of them gets the
resource with equal probability, so the expected outcome of this
case is 3 — ¢p for both of them.

Thus the overall outcome is &z‘::fﬂ for the law-abider and **2-c2)
for the dove.

For our numerical example, we will take the following numbers: cp = 3,
u = 10 and cy = 20, which yields the following payoff matrix:

| Dove Hawk Law-abider
Dove 20 0,10 1.6
Hawk 10,0 -5, -5 2.5,-2.5
Law-abider 6,1 -2.5,2.5 5.5

Now we have to observe the average gain ;(t) of an individual applying
strategy ¢ at time ¢: it is given by the mean of possible gains, wei ghted by the
proportions p; of the population following each of the strategies, i:

vi(t) = 3 ripy(t) (3.8)

This average gain of strategy 7 must be compared with the mean gain of all
strategies:

y(t) = S wt)p(t) (3.9)
i

The growth of the subpopulation applying strategy i is modelled as propor-
tional to the difference Fj(t) between its average gain and the overall mean
gain of all strategies y(t):

Fi(t) = yi(t) = y(t) (3.10)

S AN EXampe dovey, ’

I 1 (2) 1s positive, then strategy ¢ 18 more successful than the average and it iy
inherited, imitated or indoctrinated more often; that is, it spreads faster lhbun
the overall mean of the strategies. Thus, the relative growth of the strategies

unn be written as follows:
pi(t + 1) = pi(t)[1 + Fi(t)] (3.11)

This difference equation can be transformed into a differential equation if
we assume that within a time span of length At the effects on growth are
teduced by this factor (compare equations (3.3)~3.7)):

pi(t+At) = p()[1+ AtFi(t)] (3.12)
p‘l(t +At] _pi(t) = pt(t)-Fl(t) (313)
At
Taking limits, we have
Hm pi(t +AL) — pt-(t) = p; = pi P (3.14)
At—0 At

Inserting equations (3.10), (3.9) and (3.8) into equation (3.14) yields the
relative growth of strategy ¢:

pi = piF; (3.15)
= pi(yi —v) (3.16)
= Dili —DPi ) YkPk (3:17)

k

Pi Z ri;pj(t) — i Z z T;P5 () Pk (t) (3.18)
J k 3

which is a cubic differential equation of the same type as described py
l{igen and Schuster (1979: 30-31) (selection under constrained growth with
nonlinear growth rates) and used by Troitzsch (1994: 44).

... and its analytical treatment

Differential equation models of this type can be treated in three different
ways:
e by linear stability analysis, where interest centres on whether the

model can assume a stationary state (or equilibrium, a state in which
the system will remain once it has reached this state) and how the
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¢ by global stability analysis, which I§ voncerned with whether sta
tionary states are attractors or repellors, that fs, whether the system

approaches or escapes stationary states from arbitrary initial states;

® by numerical treatment, in which a large number of trajectories are.

calculated starting from different initial states.

The first question is whether and where a system has stationary states,
This is addressed by determining those states in which the right-hand sides
of the system of differential equations become zero. In these states, the
derivatives, that is, the time-dependent changes of all state variables, are
zero, and consequently, the system will remain one of these states once it has
been reached. This means we equate the right-hand side of equation (3.18)

to zero:

0=p:) rp;(t) —pi Y S rajm;(t)pa(t) (3.19)
3 % 5

Three first candidates for stationary states are all the states in which the
whole population applies the same strategy. For pp = py = 0 and, conse-
quently, p;, = 1, equation (3.19) is satisfied for i = D (dove) and i = H

(hawk); and for i = L (law-abider) it simplifies to

OZI'TLL'].—I'TLL-I'I (320)

and the same is true for all permutations of indices.

There is a fourth stationary state, in which doves and hawks coexist
and law-abiders are absent. To find this stationary state (and to do some
mathematical derivations, which are necessary for the following discussion)
it is convenient to express the system of differential equations in terms of the
constants ¢y, cp and u, and to keep in mind that there are only two coupled
differential equations, because at all times p;, = 1 — Pp — pu- By several

intricate transformations and insertions, this leads to the following system of
differential equations:

2
Pp = —pH;D(2cD+cH)+prD(2c:H+2cD—u)+
2
+}—:;2(209 4 )i %"(2@ +u) (3.21)
2 2
pu = ~PEE(2p +cu) + P ey —u) +
PHPD

+

1 (dep +cn +u) - 1“'?“"(‘:H — ) (3.22)

Ishand wides of thix system reduce to zaro for

_ oy =u i SR (3.23)
PD™ o on 2ep b e

s (hat the system will be in equilil?rium if the pr.opg:tigz;l of doves
apulation {8 ;24 and the proportion of hawks is 5 %0 (and no
il sent).

\ _I-' :u?u?l::t happens in an immediate (inﬁnitcsimal). neighbourhood
Millonary states we have to approximgte the nonlinear system qf
jilal equations (3.21) and (3.22) by a linear ‘system. We leave t?ns
in o Appendix B (p. 267) which will also give a first m?roducuon
ulytical treatment of equation-based models.. l.ts result is that tpe
I state is the state with only law-abiders surviving. The states with
vo . with only hawks, and the mixed state: in equation (3.23) are all
I8, 40 that even minimal fluctuations that import a .small fractl.on of
iders into the population will lead to an ever growing proportion of
ders. A population starting with an arbitrary rm:xture of only hawks
ves into which some law-abiders are inserted will first al?proach the
d Illltionary state of equation (3.23) and then the proportion of law-
i will grow until the law-abiders have d‘riven out all the hawks.
Intiitively, we may assume that the law-ablders. are ﬁtt_er than both hawks
Woves. They avoid the additional costs of ﬂ_ghnng which the hawks have
wur when they attack others, and they avoid the unnecessary losses the
s hive to bear when they do not defend their possessions against attacks
Iawks. In a world with a large majority of hawks, law-ab}ders are not
i better off than hawks, because they will behave much hket hawks in
| _e¢ncounters (in that they at least start counterattacks), and in a world
ith n large majority of doves, law-abider_s are not much bett.er off than
uves, because they will behave like doves in r.nost er?counters (in that they
it for a possession until it is given gp). But in a mixed world they enjoz
I i adaptive strategy: in encounters with hawks they_ have a better expecte
\lcome than doves because they give up less easily than doves, and in
sneounters with doves they have the better expe(.:ted outcome than doves
sause they take the resources away without waiting.

| DYNAMO model

1 i i 1 del mathematically,
Ihe equations with which we described our mo
(1.8)-(3.11), can easily be transformed into a DYNAMO model. The
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the DYNAMO code

ferentinl equations and

po(t+1) dove  k
pr(t+1) hawk  k
pr(t+1) lawa.k
pp(t) dove. j

yp(t) = 2;- Tp;ip;(t) dove.k#rdd+hawk.k+#rdh+lawa. k*rdl

+lawa.k*rdl)*dove

y(t) - yields.kl=yieldd.kl+yieldh.kl
+yieldl.kl

o) Fp(®) = po(®) Wo(t) —¥()) | yiselad.jk-dove jryields Jk

yp(t)pp(t) yieldd.kl=(dove.k*rdd+hawk.k*rdh i‘
5.

correspondence between the mathematical formulation and the DYNAMO

code is given in Table 3.1 (i is replaced by D, H and L, respectively).
Thus, we arrive at a first formulation of the DYNAMO model:

dove.k=dove.j+dt*(yie1dd.jk—dove.j*yields.jk)
hawk.k=hawk.j+dt*(yie1dh.jk-hawk.j*yields.jk)
lawa.k=1awa.j+dt*(yieldl.jk—lawa.j*yields.jk)
yieldd.kl=(dove.k*rdd+hawk.k*rdh+lawa.k*rdl)*dove.k
yieldh.kl=(dove.k*rhd+hawk.k*rhh+lawa.k*rhl)*hawk.k
yieldl.kl=(dove.k*rld+hawk.k*rlh+lawa.k*rll)*lava.k
yields.kl=yieldd.k1+yieldh-k1+yieldl.kl

This DYNAMO program is correct, but it does not reflect the fact that
the sum of the level variables (dove.k+hawk.k+lawa.k) always remains
constant. In a population of constant size, there are no flows to and from
outside, but only flows among the subpopulations. Observe, however, that
a direct flow between the doves’ and the law-abiders’ populations need
not be explicitly modelled. Only net flows via the rates for the doves’ and
the law-abiders’ populations can and need be modelled, since Martinez
Coll’s explication of his model does not give any clue to the individual
flows between the subpopulations. His description is only about growing
and shrinking subpopulations, not about individuals changing their strategies

— hence we cannot determine how many individuals (or which proportion)

‘flow’ from, for example, dove to lawa.

To visualize this fuct, one would need a systom dynamics dingram with-
out wources and sinks,* like that in Figure 3.2~ which, however, iy not a
systems dynamics diagram in the sense of Forrester, but a diagram that is
generated in the first step of STELLA modelling,

A STELLA model

With the help of the STELLA software one does not st@ with f:quations, b1:|t
with graphic symbols that are arranged on screen to yield a diagram that is
much like the diagrams invented by Forrester. Thf: STELLA soﬁu{are tlllen
wonverts the diagram into program code, which is similar to, but not wllent:cgl
with DYNAMO code. The main difference between the two formah'sms is
that STELLA uses a more mathematical notation instead of the cryptic JKL
(enotation of the time points — as is shown in the program code below.

The terminology of STELLA is quite similar to DYNAMQ, t?ut levels
ure called stocks in STELLA, while rates are flows and auxiliaries (such
iy yieldd in the following example) are con'verters. Stocks are cqnnected
by flows, either between each other (as in this example) or with sinks and
gources (as in the next example below). Connectors connect stocks and

~ gonverters with the valves in the flows.

In our example, the diagram consists of three stocks, each standing for
one of the populations, and two bidirectional flows call.ed. ddove and dlawa
both of which can be either negative or positive (and this is why dhawk n'ced
not explicitly be modelled). ddove and dlawﬁl have to be calculated in a
way that reproduces Martinez Coll’s original ideas (see the program code
generated by STELLA). Of course, STELLA cannot fomqulaFe the right hand
sides for ddove, for example, instead the STELLA user is given a chan.ce ?0
write down this right hand side. The panel popping up when tl.le ddove lm'e in
STELLA’s code window is double-clicked (see Figure 3.3? hgts the_. required
inputs for the right hand side of the ddove equation (this list is derived frqm
the arrows pointing into the ddove valve) and gives the user the opportunity
to enter his or her code. . .

The full STELLA code derived from the diagram of Figure 3.2 is the
following:

A ‘sink’ in system dynamics terminology is a never-ove‘rﬂowing‘ basin t’o which ﬂows
may be directed that leave the system; thus it is the opposue' of a source’. Note tha_t in
linear stability analysis (see Appendix B) ‘sink’ &?nd ‘source’ have a different meaning,
namely stable and unstable stationary state, respectively.
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Figure 3.2: System dynamics diagram of | he dove - hiuwk- Luw-abider mo . R l';g“'c;w equations in STELLA
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i = 20
[\ ialHawks = 0.9
e = 10
» poss/2-codo
i = 0

Il = rdd/2

il = poss

i

Doves(t) = Doves(t - dt) + (- ddove) * dt

I » (poss-coha)/2
INIT Doves = (1-InitialHawks)/2 1 - (Ehh+poss)/2
ddove = Doves*yields-yieldd 1d = (rdd+poss) /2
= rhh/2

Hawks(t) = Hawks(t - dt) + (ddove - dlawa) * dt 11 = poss/2

y (Doves*rdd+Hawks*rdh+LawAbiders*rdl) *Doves
(Doves*rhd+Hawks*rhh+LawAbiders*rhl) *Hawks
(Doves*rld+Hawks*rlh+LawAbiders*rll)*LawAbiders
yieldd+yieldh+yieldl

: yleldd
INIT Hawks = InitialHawks yloldh
ddove = Doves*yields-yieldd

: 1eldl
dlawa = yieldl-LawAbiders*yields ylelds

"

LawAbiders(t) = LawAbiders(t - dt) + (dlawa) » dt yieldd, .., yields are converters (in DYNAMO: auxiliaries) which
INIT LawAbiders = (1-InitialHawks)/2

. are used as shorthand for a longish expression such as (Doves¥rdd
dlava = 1d1- : : | us .
W8 T pieldl-Lavibiderep AN + Hawks*rdh + LawAbiders#*rdl)*Doves which could have replaced
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A Repuilt of 0 STELLA run of the dove-hawk -law-abider model
I per cent hawks at the start

e L R
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| Ith any change of
hin oxpi

VOUTIive noeded o chanyge 1t several times).
unning this simulation with the payoffs from the table on p. 34 and an
initial distribution of 90 per cent hawks and § por cent of both doves and
law-abiders, we obtain the results in Figure 3.4, With 99,9 per cent hawks,
we obtain Figure 3.5. Figure 3.6 shows the results with 99 per cent doves at

the start. This model displays the following behaviour:

e The proportion of hawks rapidly decreases (or increases) to about 61
per cent, whereas the proportion of doves rises (or falls) to about 38
per cent. This level persists for quite a while (this is much more clearly
visible in Figure 3.5 and Figure 3.6 than in F igure 3.4; see the discus-
sion below, in the commentary section). Afterwards the proportions
of both hawks and doves decrease, first slowly, then more rapidly. A
mixture of about 61.5 per cent hawks and about 38.5 per cent doves
makes up a stationary state — see equation (3.23) — which is stable in
the absence of law-abiders (that is, it is a saddle point state, which is
left if there is even a minute proportion of law-abiders).

e After the stationary state, the proportion of law-abiders increases very
slowly.

e Later on, the proportions of both hawks and doves decrease (and
eventually they become extinct), while the proportion of law-abiders
rises to 100 per cent.

" (I T a0 Y 100
a 1 (Atiact Tew 1457 MM 13 Aug 2003
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w 1.5 Result of a STELLA run of the dove—hawk—law-abider model
9.9 per cent hawks at the start

Of course, any population with only one strategy extant is at a stationary
state. With the parameter values as applied above, only the last mentioned
state — the extinction of hawks and doves — is a stable state. Even if the
simulation starts with 99 per cent doves and 0.5 per cent of hawks and law-
abiders each, only the latter survive (see Figure 3.6).

For Hobbes’ theory we have two consequences:

009 Mo oy
Tew WED AT Aug 000

e 3.6: Result of a STELLA run of the dove—hawk—law-abider model

I 99 per cent doves at the start
® As soon as the law-abiding strategy, which is superior to the other

two, was invented, it would necessarily prevail, and it would so by I‘ O g el L
nature, not by covenant and only because of the individuals’ capacity i \

to inherit, imitate or learn. / [

e The law-abiding strategy prevails only after a considerable time. The ; \f‘_‘_"—-ﬁm

time it takes until it first grows is the longer, the larger the initial i /L ; !
proportion of hawks. The eventual success is rather sudden, the more } i

so, the larger the initial proportion of hawks (compare Figure 3.4 to y (e i \\_g _
Figure 3.5). P R L L
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von towards the origin, which in turn represents a state with no doves and
| hwk, but only law-abiders), Note that this diagram does not indicate the
wod with which the model changes state.

When the model starts with a large proportion of doves (and conse-
tly with a tiny proportion of both hawks and law-abiders), that is to
 from the lower right-hand corner of the state space, first the numbf:r of
JWwhks rises while the number of doves decreases. The number of law-abiders
muins small for quite a time, until the proportions of doves and hawks
pronch the fourth stationary state (see equation (3.23)). Fror‘n then on,
e numbers of both doves and hawks decrease, and the lprOportlon of law-
biders increases until in the end both doves and hawks die out. If we have a
g t number of law-abiders and only very few hawks from the beginning,
" I8, if we start from the middle of the bottom of the state space, the
mber of hawks initially increases only slightly and aﬁ?mgds decreases,
hile the number of doves decreases from the very beginning. If we start
A many hawks and few doves and law-abiders (top left-hand corner of the
i upace), then the number of hawks decreases fast, the number of d_oves
jul increases and then decreases again, while the number of 1gw—ab1ders
i Iy begins to grow after the model has approached the sadflle point.

_ Ho we are able to generalize the conclusions of the previous serftlon, altnd
Il generalization would not have been possible from the few simulation
Jins we described there:

Neither the mathematical treatment nor the simulation allowed a convincing
qualitative overall description of the model. While mathematics taught us
that, regardless of the initial conditions, there is only one stable state, the
equations did not say much about the path taken through the state space,
Simulation, on the other hand, showed the behaviour of the model, but only
for one initialization at a time. Hence, the comparison of a large number
of simulation runs is necessary to complete the qualitative description of a
model’s behaviour, larger than the number of runs we could present here.
To overcome this gap between mathematical analysis and single-run
simulation, we choose next another kind of visual representation, namely
the representation of the model’s behaviour in its state space. For this we
draw 20 of the paths the model takes through its state space (see Figure 3.7
— the state space is spanned by the proportions of doves and hawks, and
every point on one of the curves represent a state explicitly defined by the
proportions of doves and hawks; the representative point of a population

Figure 3.7: Behaviour of the dove—hawk—law-abider model in its state space.

oS

» The law-abiding strategy prevails only after a considerable tilmel. The
more homogeneous the population at the start (a large majority f’f
doves or hawks before the first law-abiders are born), the later its
success, and the more sudden its rise (start from the bottom right-hand
corner of the state space).

» If the first law-abiders are born into a mixed society of doves.and
hawks, they begin to multiply very soon (start from the saddle point).

oy ~ Waorld models

Nystem dynamics and DYNAMO received widespread interest mainly be-
tause they were used to build large world models such as WORLD2 .(}?or-
foster 1971); WORLD3 (Meadows et al. 1974); and WORLD3. revisited
- (Meadows et al. 1992). Forrester’s WORLD2 was the first and sunplest'of
Doves . these. We will use it now to discuss some problems of large system dynamics
models.

0.0000.
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Figure 3.8: Main features of Forrester’s world model
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Igure 3.8 shows o STELLA version of Forrester's world model with its

Hon sector, pollution sector, natural resources sector and capital stock
o, All these sectors contain one or two internal feedback loops. They are
il logether by numerous auxiliaries and controlled by numerous constants.
I'he bottom part of Figure 3.8 shows some of the feedback mechanisms
ween the population and the pollution sectors. The corresponding lines of
teuter’s program are shown below in a STELLA version:

» The population increases and decreases according to the birth and
death rates:

- Population(t) = Population(t - dt) + (BirthRate -
DeathRate) * dt

# The birth rate depends on the actual population size, on a constant
‘normal birth rate’ and on several auxiliaries (‘birth rate multipliers’)
for food supply, material life standard, crowding and pollution:

‘BirthRate = Population*BirthRateNormalx
BirthRateFoodMultiplier#
BirthRateMaterialMultiplier*
BirthRateMaterialMultiplier*
BirthRateCrowdingMultiplierx*
BirthRatePollutionMultiplier

BirthRateCrowdingMultiplier = GRAPH(CrowdingRatio)

(0.00, 1.05), (1.00, 1.00), (2.00, 0.9}, (3.00, 0.7),

(4.00, 0.6), (5.00, 0.55)

CrowdingRatio = Population/(LandAreax
PopulationDensityNormal)

LandArea = 135E6

PopulationDensityNormal = 26.5

BirthRatePollutionMultiplier = GRAPH(PollutionRatio)

(0.00, 1.02), (10.0, 0.9), (20.0, 0.7), (30.0, 0.4),
(40.0, 0.25), (50.0, 0.15), (60.0, 0.1)

The latter two (BirthRateCrowdingMultiplier and BirthRate-
PollutionMultiplier) are determined by so-called table
functions (see below). BirthRateCrowdingMultiplier and
BirthRatePollutionMultiplier depend on CrowdingRatio
(crowding) and PollutionRatio (pollution rate), respectively.
CrowdingRatio is defined as proportional to the actual population
size (for the latter, see below).




The death rate also depends on the actual population size, on o constant
death rate and, like the birth rate, on multipliers for food supply,

B

material life standard, crowding and pollution:

DeathRate = Population*DeathRateNormal*
DeathRateMaterialMultiplierx
DeathRatePollutionMultiplier
DeathRateFoodMultiplierx
DeathRateCrowdingMultiplier
DeathRateFoodMultiplier = GRAPH(FoodRatio)
(0.00, 30.0), (0.25, 3.00), (0.5, 2.00), (0.75, 1.40),
(1.00, 1.00), (1.25, 0.7), (1.50, 0.6), (1.75, 10.5),
(2.00, 0.5)
DeathRateMaterialMultiplier =
GRAPH (MaterialStandardOfLiving)
(0.00, 1.80), (0.5, 1.80), (1.00, 1.00), (1.50, 0.8),
(2.00, 0.7), (2.50, 0.6), (3.00, 0.53), (3.50, 0.5),
(4.00, 0.5), (4.50, 0.5), (5.00, 0.5)
DeathRateCrowdingMultiplier = GRAPH(CrowdingRatio)
(0.00, 0.9), (1.00, 1.00), (2.00, 1.20), (3.00, 1.50),
(4.00, 1.90), (5.00, 3.00)

DeathRatePollutionMultiplier = GRAPH(PollutionRatio)
(0.00, 0.92), (10.0, 1.30), (20.0, 2.00), (30.0, 3.20),
(40.0, 4.80), (50.0, 6.80), (60.0, 9.20)

Again, the death rate multipliers (DeathRateFoodMultiplier,
DeathRateMaterialMultiplier, DeathRateCrowding-
Multiplier and DeathRatePollutionMultiplier) are determined
by table functions different from the ones used for the calculation of
birth rate multipliers.

The pollution rate is calculated from the actual pollution level by a
simple division:

PollutionRatio = Pollution/PollutionStandard
PollutionStandard = 3.6e9

The level of pollution is determined by the rates of its generation and
absorption:

Pollution(t) = Pollution(t - dt) + (PollutionGeneration -
PollutionAbsorption) * dt

s Pollution generation depends on the population size, on & awitchable
~gonstant, and on polem, the ‘pollution capital multiplier’ determined
by the capital sector, which we will not discuss here:

PollutionGeneration = Population*PollutionNormalx
PollutionFromCapitalMultiplier

-' Pollution absorption depends only on the actual level of pollution, but
in 50 intricate a manner that a table function is again used:

PollutionAbsorption = Pollution/PollutionAbsorptionTime
PollutionAbsorptionTime = GRAPH(PollutionRatio)

(0.00, 0.6), (10.0, 2.50), (20.0, 5.00), (30.0, 8.00),
(40.0, 11.5), (50.0, 15.5), (60.0, 20.0)

“Tuble functions were DYNAMO’s (and graph functions are STELLA’s)
of modelling those nonlinear relationships between two va.riablesf that
Wiot be written down as a single equation. In most cases, these nonlinear
3'onships are taken from empirical data. In STELLA, function tables are
fined with the help of a special window which is shown in Figure 3.9.

* Ihe value that table returns is calculated as a linear interpolation. The

re 3.9: Evaluation of table functions in STELLA
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table function used in the ealeulation  pollution absorption is evaluated ntlon backwards in time (see Figure 3.11), We wee immediately that
indicated by Figure 3.9: function values when its argument is within the fir o {n a problem, because during the last two decades of the nineteenth
interval are interpolated between the first and second table entries, functio ity the world population is ‘predicted” to have decreased from 6 billion
values when its argument is within the second interval are interpolates AMB0 (o the historical 1.7 billion in 1900, which was obviously not the
between the second and third table entries, and so on. Thus, the table mus e
have n + 1 entries for n intervals. p

The table function technique makes a number of numeri b icti ;
nooessary s STELLA program. With W](a)r:cfi];, Db 53t ﬁmc‘t:?oln‘;,al “: ghire 1. 11: Retrodiction of Forrester’s WORLD2 model back to 1880
amounts to 151 numerical values. '

Figure 3.10 shows its predictions for births, deaths and world population
size. The latter is predicted to have its maximum about the year 2035 when o
for the first time since the early twentieth century, the number of deaths will
exceed the number of births. - ' LU

s Population = Births * 10 —s— Deaths * 10

Figure 3.10: Prediction results of Forrester’s WORLD2 model for births
deaths and population size |
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It is difficult to find the cause of this erroneous ‘retrodiction’. Zwicker
[|U81: 481) points out that with a slight modification of the dependence of
the death rate multiplier for material life standard (DeathRateMaterial-
% 0.00 Multiplier) on the material life standard (MaterialStandardOfLiving)
2 0.00 the retrodiction is much more plausible. He changed the first entry in the
e B foin faw 26000 210000 DeathRateMaterialMultiplier table function from 3 to 1.8,
) Graph 2 (Population) Years 16:15 Mon, 11, Aug 2003 :

DunthRateMaterialMultiplier = GRAPH(MaterialStandardOfLiving)
(0. 00, 1.80), (0.5, 1.80), (1.00, 1.00), (1.50, 0.8),

. (2.00, 0.7), (2.50, 0.6), (3.00, 0.53), (3.50, 0.5),

(4.00, 0.5), (4.50, 0.5), (5.00, 0.5)

Problems and an outlook und obtained a more or less correct ‘retrodiction’ of the total population
{or 1880 and, moreover, a birth rate above the death rate back to 1888 (see

It is interesting to see what happens when Forrester’s world model, with Figure 3.12).
its standard parameter set, is used to ‘retrodict’ births, deaths and world The high dependence of DeathRateMaterialMultiplier on



Figure 3.12: Retrodiction of Forrestor model back to 1880, with
a slight correction of DeathRateMaterialMultiplier

—=—Population ——Births * 10 —— Deaths * 10
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MaterialStandardOfLiving for low values of MaterialStandard-
OfLiving (at the eve of the twentieth century) is responsible for this effect.
Eliminating this high dependence cancels the effect without changing the
model for the twentieth and twenty-first centuries.

Table functions can thus be dangerous — we should not forget that a
table function is a fairly raw means of representing the dependence of one
variable on another. In many cases, modellers have only a rough notion of
this dependence and a notion such as ‘the more of z, the faster y increases’
may be represented by an infinite number of different continuous or table
functions. Hence, modellers may fall into the ‘trap of tractability’ (Doran
and Gilbert 1994: 13) when they select their representation of a monotonic
dependence: a linear dependence is always the simplest form of a monotonic
dependence, and it is easily tractable by mathematical algorithms, but so-
lutions will usually be different for linear dependencies as compared with
different nonlinear ones. This was one of the reasons for introducing so-
called ‘qualitative differential equations’ (Kuipers 1994: 3) into the mod-
elling and simulation scene. The only type of knowledge used in qualitative
simulation is in terms of intervals between ‘landmarks’ — for example, the
interval between the melting point of ice and the boiling point of water — and
in terms of monotonically increasing and decreasing functions. Qualitative
simulation has so far mostly been applied to physical phenomena (‘naive

'), and only seldom to social phenomena (bt ke Mrafnik and Lines
), 40 we will not go into the details of thin new appronch,
Another shortcoming of Forrester's WORLD2 i the fhct that the popu-
An ulways seen as a whole and that its age structure is not considered at
A ohanging age structure, however, will affect both birth and death rates.
i, Meadows' WORLD3 was a step forward in so far as this world model
inined four different level variables for the age groups 0-14, 15-44, 45—
Wil 65+, with different death rates and birth rates depending orllly' on t'he
i Intion aged between 15 and 44. However, the model did not distinguish
{Ween men and women.
- What is still missing even in WORLD3 is a differentiation befween
u of the world. Birth and death rates as well as many othftr vanszl?s
¥ preatly between different continents, countries and even regions within
hirles. This is why as early as in the mid-1970s a new effort was launt{hed
ot the name of GLOBUS: ‘the construction of an all-computer, nation-
Wi, political world model from empirical data — something whl_ch did not
i exist anywhere in the world” (Deutsch 1987: xiv). GLOBUS is a m(?del
| Lonsists of interacting component models for each of 25 different nations
'='lheir own demographic, economic, political and government processes
e interactions are separately modelled. This type of mode_l is far beyond
e dynamics, so we will not discuss it in any further detail. _
 LLOBUS overcomes one of the most important shortcomings of the
o dynamics approach. System dynamics describes the targclt system as
Jingle entity or object. A system dynamics model is an indivisible who'le.
‘We happen to find parts in the target system (like cont'inents or countries
{he world) we have to describe their properties as attributes of thelworld
\ulel and thus leave the system dynamics approach — as GLOBUS did.
Although the GLOBUS group never continued their research aﬁer
Wit book appeared and after MicroGLOBUS (a DOS-based demonst.rat}on
it lol) had been distributed, there are other groups who followed similar
pproaches. The ‘International Futures’ Group (Hughes 1999) developed a
Inodel encompassing all major states of the world (which can be aggregated
W hitrarily into regions.’ Population is modelled in five-year cohorts, several
1 unomic sectors, food types, land types, energy types and types of govern-
Jent spending can be distinguished. Thus the International Futures model is,
0 tourse, much more detailed than the classical world models by Forrester
and Meadows, and even more detailed than the GLOBUS model in so far

"The downloadable demonstration and student version, http: // m.du.eclu_/ ~
lghes/ifswelcome.html, comes with nine individual countries, the European Union
Wil seven regions such as *Other Europe’.
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as the latter encompasses only 25 nations plus the ‘rest of the world’, has pnoribed the world population in different age groups, 'dlltlnlullllltd
a coarser-grained age structure, which is exogenously determined, Just to induntrinl and service capital, and went into more detail concerning
name a few differences. Ao and fertility. Its results are discussed from a 19908 perspective in

Mendows, D, H, er al. (1992) Beyond the Limits. Chelsea Green, Post
- Mills, VT.

book states that the original model needed only very few correcFions,
i (he data produced by the target system — the world as it behaved in the
h and 1980s — were taken into consideration. _ . .
womprehensive description of system dynamics oriented simulation
hods In the social sciences is provided by

Hunneman, R. A. (1988) Computer-Assisted Theory Building. Model-
lug Dynamic Social Systems. Sage, Newbury Park, CA.

not so much address a special target system (like Forrester and
lows always did, writing about urban or industrial or world develo_p-
), but rather has ‘the immodest goal of reorienting how many sm_nal
it 0 about building and working with theories’ (p. ?), thus mak'mg
lution a new methodological paradigm for the social sciences, restrict-
elf, however, to macro and other equation-based models throughout
Al :xtensively comprehensive description of system dynamics orif:nted
ulation mostly, but not only, in business research was recently published

Further reading

There are many books dedicated to the system dynamics simulation ap-
proach, beginning with

o Forrester, J. W. (1980): Principles of Systems, 2nd preliminary edn.
MIT Press, Cambridge, MA (1st edn 1968).

which first introduced the technique. It includes a number of technical de-
tails about an early version of DYNAMO and some simple examples. This
technique was first applied by

e Forrester, J. W. (1971) World Dynamics. MIT Press, Cambridge, MA
to world models of the type we discussed earlier in this chapter, and
e Forrester, J. W. (1969) Urban Dynamics. MIT Press, Cambridge, MA

applied system dynamics to ‘the problems of our ageing urban areas’, intro-
duced a model of an urban area and predicted over 250 years its future devel-
opment in the unemployment, labour, managerial and professional sectors as
well as in the housing, industry, tax and town planning sectors. Forrester’s
first book on related topics,

e Forrester, J. W. (1961) Industrial Dynamics. MIT Press, Cambridge,
MA

has enjoyed a wide readership and stimulated research on complex systems.
The original DYNAMO manual was

e Pugh, A. L. III (1976) DYNAMO User’s Manual. MIT Press, Cam-
bridge, MA

which has since been superseded by more modern versions of the DYNAMO
language.

Another influential group of books began with the introduction of a far
more sophisticated world model in

e Meadows, D. L. et al. (1974) Dynamics of Growth in a Finite World.
MIT Press, Cambridge, MA.

'» Sterman, J. D. (2000) Business Dynamics: Systems Thinking and Mod-
~ uling for a Complex World. McGraw-Hill, New York, NY.

ines with a CD-ROM with modelling software from Vensim, ithink and
yrSim dedicated to ‘issues such as fluctuating sales, market growthl a}nd
m tion, the reliability of forecasts and the rationality of business decision
Hing.' (from the blurb) . :

‘More recent world models are presented and discussed in

% Bremer, St.A. ed. (1987) The GLOBUS Model. Computer Simu-
lation of Worldwide Political and Economic Developments, Cam-
pus/Westview Press, Frankfurt/M. and Boulder, CO.

Muh is the summary of work done in the GLOBUS projec_:t which devel-
il i world model ‘based on nation-states, not regions’ while

. # Hughes, B.B. (1999) International Futures: Choices in the Face of
Uncertainty, Westview Press, Boulder, CO.
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in a way continues this work in so far as it presents a more modern (Windoy
compatible) type of multi-nation world model which can be download
from http://www.du. edu/~bhughes/ifswelcome.html.

The qualitative simulation approach briefly mentioned on page 52
discussed in detail in

Bote: « |

 Kuipers, B. (1974) Qualitative Reasoning. Modeling and Simulati
with Incomplete Knowledge, MIT Press, Cambridge, MA. -

| -_ roanalytical simulation
lels

iseussed in the previous chapter, system dynamics models its target
s as indivisible wholes and does not take into account the fact that
i social scientist target systems usually consist of individual persons, .
I, classes, subpopulations and so on. Social scientists will therefore be

puted in modelling approaches on several levels — an aggregate level and

lenst one lower level. The first approach that tried to solve this problem

he classical microsimulation approach. It has been used to predict the

ividual and group effects of aggregate political measures that often apply
stently to different persons. For instance, a tax formula that imposes taxes
¢ on persons with incomes above a certain threshold might be changed
noving this threshold. If we want to calculate the gross effect on the total
Jevenue, a simulation on the macro level cannot help. We must instead
ek to the individual cases, calculate their taxes due before and after the
A levision, and reaggregate the tax revenue.

Another example can be taken from demography. Changing age struc-
v of a population can be simulated on a macro level — see the discussion
e 53 in Chapter 3. We would have several level variables with the sizes
W number of sex/age groups to which we would apply age-group-specific
rates, and we would calculate births from the sizes of the female age
ips between 15 and 45 years of age, applying age-dependent fertility
us, If we were only interested in the age structure of a population, this

lerministic macro model might be sufficient because, with a very large
I




