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Abstract
In many real-world planning scenarios, the users
are interested in optimizing multiple objectives
(such as makespan and execution cost), but are un-
able to express their exact tradeoff between those
objectives. When a planner encounters such par-
tial preference models, rather than look for a sin-
gle optimal plan, it needs to present the pareto set
of plans and let the user choose from them. This
idea of presenting the full pareto set is fraught
with both computational and user-interface chal-
lenges. To make it practical, we propose the ap-
proach of finding a representative subset of the
pareto set. We measure the quality of this rep-
resentative set using the Integrated Convex Pref-
erence (ICP) model, originally developed in the
OR community. We implement several heuristic
approaches based on the Metric-LPG planner to
find a good solution set according to this mea-
sure. We present empirical results demonstrating
the promise of our approach.

1 Introduction
In many real world planning scenarios, the user’s preferences
on desired plans are either unknown or at best partially speci-
fied (c.f. [Kambhampati, 2008]). In such cases, the planner’s
job changes from finding a single optimal plan to finding a
set of representative solutions (“options”) and present them
to the user (with the hope that the user will find one of them
desirable). Most work in automated planning ignores this re-
ality, and assumes instead that the user’s preferences on the
plan quality are expressed in terms of a completely specified
objective function.

One exception to this general trend is our own previous
work [Srivastava et al., 2007] which focused on diverse plan
generation in the extreme case when there is absolutely no
knowledge about the underlying preference model. In this
case, the best strategy is to generate a set of plans that are
maximally different (distant) from each other. The critical
challenges turn out to be: (1) to develop meaningful distance
measures between plans, and (2) to use them in the plan syn-
thesis process. However, not all applications fall into this ex-
treme case. More often than not, partial information about
user preferences—especially, the attributes of the solutions

that matter (e.g., flying time, ticket price, number of stops
when buying airline ticket) — are known, although the ex-
act trade-offs between them are not fully known. One ap-
proach of course would be to ignore this partial information
and still search for plans that are maximally diverse accord-
ing to a distance function. The problem is that the resulting
set of plans, while diverse, may not differ in the attributes
that matter. For example, two travel plans–one on United and
the other on Delta Airlines–may be considered “distant” from
each other, but may be equivalent if the user only cares about
the makespan and cost.

In such cases with partially expressed preferences, the
favored approach in operations research is to compute the
pareto optimal set of non-dominated solutions. There are
two problems with this approach—one computational, and
other comprehensional. The computational problem is that
the pareto set is often too large. While enumerating the entire
pareto set is known to be already hard even in simpler com-
binatorial problems like scheduling [Carlyle et al., 2003], it
is even harder in planning since synthesis of a single feasible
plan is often quite costly already. Coming to the second prob-
lem, even if we can afford to compute the full pareto set, it is
unclear that users will be able to inspect such a large set of
plans to identify the ones they prefer.

What is clearly needed is the ability to compute a small
representative subset of plans from the pareto set and present
them to the user. An immediate challenge is formalizing what
it means for a subset of plans to be “representative” of the
pareto set. Several obvious ideas, such as picking plans on
the pareto set that are maximally distant from each other, turn
out not to be robust. Instead, we adapt the idea of Integrated
Preference Function (IPF) [Carlyle et al., 2003] (and its spe-
cial case Integrated Convex Preference (ICP)), that was de-
veloped in the Operations Research (OR) community in the
context of multi-criteria scheduling. Given a set of quality
criteria whose convex combination defines the unknown ob-
jective function, and a probability distribution1 on the values
the weights in the convex combination can take, ICP is able
to associate a robust measure of representativeness for any set
of solution plans. Armed with this, we can then formulate the
problem of planning with partial preference models as one
of finding a bounded set of solutions that have the best ICP

1Even if we do not have any special knowledge about this prob-
ability distribution, we can always start by initializing it to be uni-
form, and gradually improve it based on interaction with the user.



measure.
We present a spectrum of approaches for solving this prob-

lem efficiently. We implement these approaches on top of
Metric-LPG [Gerevini et al., 2008]. Our empirical evaluation
compares the approaches both among themselves as well as
against existing methods for generating diverse plans that ig-
nore the partial preference information (c.f. [Srivastava et al.,
2007]). Our results demonstrate the promise of our proposed
solutions.

2 Problem Formulation
While our work is applicable to any general planning scenar-
ios, to make our discussion concrete, we will concentrate on
metric temporal planning where each action a ∈ A has a du-
ration da and execution cost ca. The planner needs to find
a plan p = {a1 . . . an}, which is a sequence of actions that
is executable and achieves all goals. The two most common
plan quality measures are: makespan, which is the total exe-
cution time of p; and plan cost, which is the total execution
cost of all actions in p. In most real-world applications, these
two criteria compete with each other: shorter plans usually
have higher cost and vice versa. Throughout the paper, we
will use the following assumptions:

• The desired objective function involves minimizing
both components: time(p) measures the makespan of
the plan p and cost(p) measures its execution cost.
• The quality of a plan p is a convex combination:
f(p, w) = w × time(p) + (1 − w) × cost(p), where
weight w ∈ [0, 1] represents the trade-off between the
two competing objective functions.
• The belief distribution of w over the range [0, 1] is

known. If the user does not provide any information
or we have not learnt anything about the preference on
the trade-off between time and cost of the plan, then the
planner can assume a uniform distribution (and improve
it later using techniques such as preference elicitation).

Given that the exact value ofw is unknown, we cannot find
a single optimal plan. Therefore, the best strategy is to find
a representative set of non-dominated plans2 minimizing the
expected value of f(p, w) with regard to the given distribution
of w over [0, 1].
Example: Figure 1 shows our running example in which
there are a total of 7 plans with their time(p) and cost(p)
values as follows: p1 = {4, 25}, p2 = {6, 22}, p3 =
{7, 15}, p4 = {8, 20}, p5 = {10, 12}, p6 = {11, 14},
and p7 = {12, 5}. Among these 7 plans, 5 of them be-
long to a pareto optimal set of non-dominated plans: Pp =
{p1, p2, p3, p5, p7}. The other two plans are dominated by
some plans in Pp: p4 is dominated by p3 and p6 is dominated
by p5. Plans in the Pp are depicted in solid dots in Figure 1.

3 Integrated Convex Preference (ICP)
The Integrated Preference Function (IPF) [Carlyle et al.,
2003] has been used to measure the quality of a solution
set in a wide range of multi-objective optimization problems.
In this section, we will first discuss IPF in its general form

2A plan p1 is dominated by p2 if time(p1) ≥ time(p2) and
cost(p1) ≥ cost(p2) and at least one of the inequalities is strict.
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Figure 1: Solid dots represents plans in the pareto set
(p1, p2, p3, p5, p7). Connected dots represent plans in the
lower convex hull (p1, p3, p7) giving optimal ICP value for
any distribution on trade-off between cost and time.

and then its special case called Integrated Convex Preference
(ICP), which is applicable to our problem formulation dis-
cussed in the previous section.

The IPF measure assumes that the user preference model
is represented by two factors: (1) a probability distribution
h(α) of parameter vector α such that

∫
α
h(α) dα = 1 (in

the absence of any special information about the distribu-
tion, h(α) can be assumed to be uniform), and (2) a function
f(p, α) : S → R (where S is the solution space) combines
different objective functions into a single real-valued quality
measure for solution p. The IPF value of solution set P ⊆ S
is defined as:

IPF (P) =
∫
α

h(α)f(pα, α) dα (1)

with pα = argmin
p∈P

f(p, α) is the best solution according to

f(p, α) for each given α value. Let p−1
α be its inverse func-

tion specifying a range of α values for which p is an optimal
solution according to f(p, α), as pα is piecewise constant, the
IPF (P) value can be computed as:

IPF (P) =
∑
p∈P

[∫
α∈p−1

α

h(α)f(p, α) dα
]

(2)

let P∗ = {p ∈ P : p−1
α 6= ∅} then we have:

IPF (P) = IPF (P ∗) =
∑
p∈P∗

[∫
α∈p−1

α

h(α)f(p, α) dα
]
(3)

The IPF (P) now can be interpreted as the expected utility
value of the best solution of P using probability distribution
h(α) on the trade-off value α and the utility function f(p, α)
measuring the quality of the optimal solution for each given
α value, represented by the P∗ set. Therefore, the set P∗ of
solutions (known as lower convex hull of P) with the minimal
IPF value is most likely to contain the desired solutions that
the user wants and in essense a good representative of Pp. In



our running example, P∗ = {p1, p3, p7} and is highlighted
by connected dots in Figure 1. the best solution of P using:
(1) the user belief probability distribution h(α) on the value
of α and (2) the utility function f(p, α) measuring the quality
of the optimal solution for each given α value, represented by
the P∗ set. Therefore, the set P∗ of solutions with the mini-
mal IPF value is most likely to contain the desired solutions
that the user wants and in essense a good representative of
P . Note that if Pp ⊆ P is the pareto optimal solution set,
then P∗ ⊆ Pp (we avoid the proof due to space limit). In
our running example, P∗ = {p1, p3, p7} and is highlighted
by connected dots in Figure 1.
IPF for Temporal Planning: The user preference model in
our target domain of temporal planning is a convex combi-
nation of the time and cost quality measures. The IPF mea-
sure now is called Integrated Convex Preference (ICP). Given
a set of plans P∗, let tp = time(p) and cp = cost(p)
be the makespan and total execution cost of plan p ∈ P∗,
the ICP value of P∗ with regard to the objective function
f(p, w) = w × tp + (1 − w) × cp and the parameter vec-
tor α = (w, 1− w) (w ∈ [0, 1]) is defined as:

ICP (P∗) =
k∑
i=1

∫ wi

wi−1

h(w)(w×tpi+(1−w)×cpi)dw (4)

where w0 = 0, wk = 1 and pi = argmin
p∈P∗

f(p, w) ∀w ∈

[wi−1, wi]. In other words, we divide [0, 1] into non-
overlapping regions such that in each region (wi−1, wi) there
is a single solution pi ∈ P∗ that has better f(pi, w) value
than all other solutions in P∗.

We select the IPF/ICP measure to evaluate our solution set
due to its several nice properties:

• If P1,P2 ⊆ P and ICP (P1) < ICP (P2) then P1

is probabilistically better than P2 in the sense that for
any given w, let p1 = argmin

p∈P1

f(p, w) and p2 =

argmin
p∈P2

f(p, w), then the probability of f(p1, w) <

f(p2, w) is higher than the probability of f(p1, w) >
f(p2, w).
• If P1 is obviously better than P2, then the ICP mea-

sure agrees with the assertion. More formally: if ∀p2 ∈
P2,∃p1 ∈ P1 such that p2 is dominated by p1, then
ICP (P1) < ICP (P2).

Empirically, extensive experimental results on scheduling
problems in [Fowler et al., 2005] have shown that ICP mea-
sure “evaluates the solution quality of approximation robustly
(i.e., similar to visual comparison results) while other alter-
native measures can misjudge the solution quality”.

4 Finding Representative Plans Using ICP
Using ICP as the basis, we can now formally state the specific
problem we aim to tackle: Given a planning problem whose
solution quality is determined by an objective function that is
a convex combination of a set of criteria, and h(α) is the esti-
mated distribution of α, the parameter vector, that combines
these criteria, our objective is to find a a set of solution plans
Ps where |Ps| ≤ k and ICP (Ps) is the lowest.

Notice that we restrict the size of the solution set returned.
This is important since the ICP measure is a monotonically
non-increasing function of the solution set (specifically, given
two solution sets P1 and P2 such that the latter is a superset
of the former, it is easy to see that ICP (P2) ≤ ICP (P1)).

In the rest of this section, we will consider three approxi-
mate methods for tackling this problem.

4.1 Sampling Weight Values
Given that the distribution of trade-off value w is known, the
straightforward way to find a set of representative solutions
is to first sample a set of k values for w: {w1, w2, ..., wk}
based on the distribution h(w). For each value wi, we can
find an (optimal) plan pi minimizing the value of the overall
objective function f(p, wi) = wi × tp + (1− wi)× cp. The
final set of solution P = {p1, p2, ....pk} is then filtered to
remove duplicate and dominated solutions resulting the plans
making up the lower-convex hull. The final set can then be
returned to the user. While intuitive and easy to implement,
this sampling-based approach has several potential flaws that
can limit the quality of its resulting plan set.

First, given that k solution plans are searched sequentially
and independently of each other, even if the plan pi found for
each wi is optimal, the final solution set P = {p1, p2...pk}
may not even be the optimal set of k solutions with regard
to the ICP measure. More specifically, for a given set of so-
lutions P , some tradeoff value w, and two non-dominated
plans p, q such that f(p, w) < f(q, w), it is possible that
ICP (P ∪ {p}) > ICP (P ∪ {q}). In our running ex-
ample, let P = {p2, p5} and w = 0.8 then f(p1, w) =
0.8×4+0.2×25 = 8.2 < f(p7, w) = 0.8×12+0.2×5 =
10.6. Thus, the planner will select p1 to add to P because
it looks locally better given the weight w = 0.8. However,
ICP ({p1, p2, p5}) ≈ 10.05 > ICP ({p2, p5, p7}) ≈ 7.71 so
indeed by taking previous set into consideration then p7 is a
much better choice than p1.

Second, the trade-off values w are sampled based on a
given distribution, and independently of the particular plan-
ning problem being solved. As there is no relation between
the sampled w values and the solution space of a given plan-
ning problem, sampling approach may return very few solu-
tions even if we sample a large number of weight values w.
In our example, if all w samples have values w ≤ 0.67 then
the optimal solution returned for any of them will always be
p7. However, we know that P∗ = {p1, p3, p7} is the optimal
set according to the ICP measure. Indeed, ifw ≤ 0.769 then
the sampling approach can only find the set {p7} or {p3, p7}
and still not be able to find the optimal set P∗.

4.2 ICP Sequential Approach
Given the potential drawbacks of the sampling approach out-
lined above, we also pursued an alternative approach that
takes into account the ICP measure more actively. Specifi-
cally, we incrementally build the solution set P by finding a
solution p such that P ∪ {p} has the lowest ICP value. We
can start with an empty solution set P = ∅, then at each step
try to find a new plan p such that P ∪ {p} has the lowest ICP
value.

While this approach directly takes the ICP measure into
consideration at each step of finding a new plan, and avoids
the drawbacks of the sampling-based approach, it also has its



Algorithm 1: Incrementally find solution set P
Input: A planning problem with a solution space S;1
maximum number of plans required k; number of
sampled trade-off values k0 (0 < k0 < k); time bound t;
Output: A plan set P (|P| ≤ k);2
begin3

W ← sample k0 values for w;4
P ← find optimal plans in S for each w ∈W ;5

while |P| < k and search time < t do6
Search for p s.t. ICP (P ∪ {p}) < ICP (P)7

P ← P ∪ {p}8

Return P9

end10

own share of potential flaws. Given that the set is built incre-
mentally, the earlier steps where the first “seed” solutions are
found are very important. The closer the seed solutions are
to the global lower convex hull, the better the improvement
in the ICP value. In our example (Figure 1), if the first plan
found is p2 then the subsequent plans found to best extend
{p2} can be p5 and thus the final set does not come close to
the optimal set P∗ = {p1, p3, p7}.

4.3 Hybrid Approach
In this approach, we aim to combine the strengths of both
the sampling and ICP-sequential approaches. Specifically,
we use sampling to find several plans optimizing for differ-
ent weights. The plans are then used to seed the subsequent
ICP-sequential runs. By seeding the hybrid approach with
good quality plan set scattered across the pareto optimal set,
we hope to gradually expand the initial set to a final set with
a much better overall ICP value. Algorithm 1 shows the
pseudo-code for the hybrid approach. We first independently
sample the set of k0 values (with k0 pre-determined) of w
given the distribution on w (step 4). We then run a heuristic
planner multiple times to find an optimal (or good quality)
solution for each trade-off value w (step 5). We then collect
the plans found and seed the subsequent runs when we incre-
mentally update the initial plan set with plans that lower the
overall ICP value (steps 6-8). The algorithm terminates and
returns the latest plan set (step 9) if k plans are found or the
time bound exceeds.

4.4 Making LPG Search Sensitive to ICP
We use a modified version of the Metric-LPG plan-
ner [Gerevini et al., 2008] as the base planner in imple-
menting our algorithms. Selection of Metric-LPG was mo-
tivated by its very flexible local-search framework that has
been extended to handle various objective functions, and the
fact that it can be made to search for single or multiple so-
lutions. Specifically, for the sampling-based approach, we
first sample the w values based on a given distribution. For
each w value, we set the metric function in the domain file to:
w ×makespan+ (1− w)× totalcost, and run the original
LPG in the quality mode to heuristically find the best solu-
tion for that metric function. The final solution set is filtered
to remove any duplicate solutions, and returned to the user.

For the ICP-sequential and hybrid approach, we can not
use the original LPG implementation as is and need to mod-

ify the neighborhood evaluation function in LPG to take into
account the ICP measure and the current plan set P . For the
rest of this section, we will explain this procedure in detail.
Background: Metric-LPG uses local search to find plans
within the space of numerical action graphs (NA-graph).
This leveled graph consists of a sequence of interleaved
proposition and action layers. The proposition layers con-
sist of a set of propositional and numerical nodes, while each
action layer consists of at most one action node, and a num-
ber of no-op links. An NA-graph G represents a valid plan if
all actions’ preconditions are supported by some actions ap-
pearing in the earlier level in G. The search neighborhood
for each local-search step is defined by a set of graph modi-
fications to fix some remaining inconsistencies (unsupported
preconditions) p at a particular level l. This can be done by
either inserting a new action a supporting p or removing from
the graph the action a that p is a precondition of (which can
introduce new inconsistencies).

Each local move creates a new NA-graph G′, which
is evaluated as a weighted combination of two fac-
tors: SearchCost(G′) and ExecCost(G′). Here,
SearchCost(G′) is the amount of search effort to resolve
inconsistencies newly introduced by inserting or removing
action a; it is measured by the number of actions in a re-
laxed plan R resolving all such inconsistencies. The total
cost ExecCost(G′), which is a default function to measure
plan quality, is measured by the total action execution costs
of all actions in R. The two weight adjustment values α and
β are used to steer the search toward either finding a solution
quickly (higher α value) or better solution quality (higher β
value). LPG then selects the local move leading to the small-
est E(G′) value.
Adjusting the evaluation function E(G′) for finding set of
plans with low ICP measure: To guide LPG towards op-
timizing our ICP-sensitive objective function instead of the
original minimizing cost objective function, we need to re-
place the default plan quality measure ExecCost(G′) with a
new measure ICPEst(G′). Specifically, we adjust the func-
tion for evaluating each new NA-graph generated by local
moves at each step to be a combination of SearchCost(G′)
and ICPEst(G′). Given the set of found plans P =
{p1, p2, ..., pn}, ICPEst(G′) guides LPG’s search toward
a plan p generated fromG′ such that the resulting set P ∪{p}
has a minimum ICP value: p = argmin

p
ICP (P∪{p}). Thus,

ICPEst(G′) estimates the expected total ICP value if the
best plan p found by expanding G′ is added to the current
found plan set P . Like the original Metric-LPG, p is esti-
mated by pR = G′

⋃
R where R is the relaxed plan resolv-

ing inconsistencies in G′ caused by inserting or removing a.
The ICPEst(G′) for a given NA-graph G′ is calculated as:
ICPEst(G′) = ICP (P ∪ pR) with the ICP measure as de-
scribed in Equation 4. Notice here that while P is the set of
valid plans, pR is not. It is an invalid plan represented by a
NA-graph containing some unsupported preconditions. How-
ever, Equation 4 is still applicable as long as we can mea-
sure the time and cost dimensions of pR. To measure the
makespan of pR, we estimate the time points at which unsup-
ported facts in G′ would be supported in pR = G′ ∪ R and
propagate them over actions in G′ to its last level. We then
take the earliest time point at which all facts at the last level
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Figure 2: Results for the ZenoTravel, Depot, and DriverLog domains comparing the sampling-based, Hybrid, and baseline LPG
approaches on the overall ICP value (log scale).
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Figure 3: Results for the ZenoTravel, Depot, and DriverLog domains comparing the sampling-based, Hybrid, and baseline LPG
approaches on the percentage of plans contributed to the overall lower convex hull.

appear to measure the makespan of pR. For the cost measure,
we just sum the individual costs of all actions in pR.

At each step of LPG’s local search framework, combining
ICPEst(G′) with SearchCost(G′) gives us an evaluation
function that fits right into the original Metric-LPG frame-
work and prefers a NA-graph G′ in the neighborhood of G
that gives the best trade-off between the estimated effort to
repair and the estimated decrease in quality of the next result-
ing plan set.

5 Experimental Results
We have implemented several approaches based on our algo-
rithms discussed in Section 4: Sampling (Section 4.1), ICP-
sequential (Section 4.2) and Hybrid that combines both (Sec-
tion 4.3). To evaluate the utility of taking partial preferences
into account, we compare our results against the naive ap-
proaches that generate multiple plans without explicitly tak-
ing into account the partial preference model. Specifically,
we run the default LPG planner with different random seeds
to find multiple non-dominated plans. The LPG planner was
run with both speed setting, which finds plans quickly, and
diverse setting, which takes longer time to find better set of
diverse plans [Srivastava et al., 2007].

We test all implementations against a set of 20 problems in
each of several benchmark temporal planning domains used
in the previous International Planning Competitions (IPC):
ZenoTravel, DriverLog, and Depot. The only modification

to the original benchmark set is the added action costs. The
descriptions of these domains can be found at the IPC website
( ipc.icaps-conference.org). The experiments were conducted
Intel Core2 Duo machine with 3.16GHz CPU and 4Gb RAM.
For all approaches, we search for a maximum of 10 plans
within the 10-minute time limit for each problem, and the re-
sulting plan set is used to compute the ICP value. We assume
no special knowledge of the distribution of the weight vec-
tors, and thus set h(α) to be uniform in computing ICP. As
LPG is a stochastic local search planner, we run it three times
for each problem and average the results. In 77% and 70%
of 60 problems in the three tested domains for Hybrid and
Sampling approaches respectively, the standard deviation of
ICP values of plan sets are at most 5% of the average values.
This indicates that ICP values of plan set in different runs are
quite stable. As the Hybrid approach is an improved version
of ICP-sequential and gives better results in almost all tested
problems, we omit ICP-sequential in discussions below.

For the uniform distribution on the trade-off value w be-
tween makespan and plan cost, Figure 2 shows the compar-
ison between different approaches based on the overall ICP
value of the solution set (smaller is better). In all three do-
mains, the results in log-scale show that both Hybrid and
Sampling approaches perform significantly better than the
two baseline approaches of using LPG. Overall, among 20
tested problems for each of the ZenoTravel, DriverLog, and
Depots domains, the Hybrid approach is better than LPG-



speed in all 60 problems and better than LPG-d in 19/20,
18/20, and 20/20 problems respectively. The Sampling ap-
proach is better than LPG-speed in 19/20, 20/20 and 20/20
and is better than LPG-d in 18/20, 18/20, and 20/20 problems
respectively. The Hybrid approach also dominates Sampling
in the majority of problems; it is better in 15/20, 11/20, and
11/20 problems in ZenoTravel, DriverLog, and Depots do-
mains (both approaches return plan sets with equal ICP values
for 3 problems in each of the DriveLog and Depots domains).

We also compare the relative total number of plans in the
lower convex-hull found by each approach. Given that this
is the set that should be returned to the user (to select one
from), the higher number is the better. To measure the rela-
tive performance of different approaches with respect to this
measurement, we first create the set S combining the plans
returned by all different approaches. We then compute the set
Slch ⊆ S of plans in the lower convex hull among all plans
in S. We measure the percentages of plans in Slch that are
actually returned by each of our tested approaches and Fig-
ure 3 shows the comparison between them. Overall, almost
all plans on the lower convex hull are contributed by either
Hybrid or Sampling approaches in all tested problems. Be-
tween Hybrid and Sampling approaches, Hybrid is again in
general better for this criterion. It returns more plans in the
lower convex hull than Sampling in 15/20, 10/20 (and an-
other 4 equals), 11/20 (and another 6 equals) problems for
ZenoTravel, DriverLog, and Depots respectively.

The results above show that naive approaches which ig-
nore the user’s partial preferences and focus on generating di-
verse plans do not work well. They also show that the hybrid
method, which is sensitive to the ICP during search, tends to
generate more plans in the lower convex hull than the sam-
pling method. This advantage is reduced to some extent for
some of the larger problems in ZenoTravel and DriverLog,
mostly because the sampling phase of the hybrid approach
takes too long, leaving too little time for the sequential phase
that is aimed at improving the seed set. To address this, in
future we propose to consider a more dynamic and problem-
dependent ways of splitting time between the sampling and
sequential phases of the hybrid approach.

6 Related Work
Currently there are very few research efforts in the plan-
ning literature that explicitly consider incompletely speci-
fied user preferences during planning. The usual approach
for handling multiple objectives is to assume that a specific
way of combining the objectives is available [Refanidis and
Vlahavas, 2003; Do and Kambhampati, 2002]. Brafman &
Chernyavsky( 2005) discuss a CSP-based planner that finds
the pareto optimal set of plans given the qualitative prefer-
ences on goals. There is no action cost and makespan mea-
surements such as in our problem setting. Other relevant work
includes [Bryce et al., 2007], in which the authors devise a
variant of LAO* algorithm to search for a conditional plan
with multiple execution options for each observation branch
that are non-dominated with respect to objectives like proba-
bility and cost to reach the goal.

7 Conclusion
In this paper, we considered an approach of finding a repre-
sentative subset of the pareto set utilizing the belief distribu-

tion of the trade-offs between conflicting objective functions
(e.g., plan makespan and execution cost). We measured the
quality of this representative solution set using the Integrated
Convex Preference (ICP) model and presented several heuris-
tic approaches based on the Metric-LPG planner [Gerevini et
al., 2008] to find a good solution set according to this mea-
sure. We showed empirically that taking partial preferences
into account does improve the quality of the plan set returned
to the users.

While a planning agent may well start with a partial pref-
erence model, in the long run, we would like the agent to be
able to improve the preference model through repeated inter-
actions with the user. Accordingly, we are currently working
on adding a learning component to our framework. In our
context, the learning will involve improving the estimate of
h(α) based on the feedback about the specific plan that the
user selects from the set returned by the system.
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