
Representations in Human–Computer
Systems Development

D. Benyon

Napier University, Edinburgh, UK

Abstract: When system developers design a computer system (or other information artefact), they must inevitably make judgements as to how to abstract
the domain and how to represent this abstraction in their designs. Over the years human–computer interaction, or more generally information systems
design, has had a history of developing competing methods and models for both the process and products of its development. Various paradigms have been
suggested, often trying to keep pace with the changing nature of the design problem; from batch processing to interactive systems to work situations and
most recently to designing for household environments. It appears timely, then, to review the nature of the design problem that faces the developers of
human–computer systems and to consider some of the impact that different representations and different conceptualisations may have on their activities.
Green (1998) has suggested that a single model of developing human–computer systems is not desirable, instead arguing for a number of limited theories
each of which provides a useful perspective. The aim of this paper is to place competing methods side by side in order to see their strengths and weaknesses
more clearly. The central tenet of the paper is that different views of both the human–computer system design process and the different abstractions, or
models, that are produced during the design process have varying degrees of utility for designers. It is unlikely that any single method or modelling approach
will be optimal in all circumstances. Designers need to be aware of the range of views that exist and of the impact that taking a particular approach may
have on the design solution.

Keywords: Design approach; HCI; Human computer systems; Models

1. INTRODUCTION

In order to produce any artefact, two major activities have
to be undertaken; the designer must understand the
requirements of the product and the designer has to develop
the product. Understanding requirements involves looking
at similar products, discussing with the people who will use
the product their needs and analysing any existing systems
to discover the problems with current designs. Development
may include producing and evaluating a variety of
representations until a suitable artefact is produced.

The term ‘design’ refers to both the process of
developing a product, artefact or system and to the various
representations (simulations or models) of the product
which are produced during the design process. Designers
need representations that will help them to understand
users’ requirements and to represent this understanding in
different ways at different stages of the design. ‘Design
inherently consists of the formulation of models of possible
states of affairs in the world’ (Goel and Piroli 1992, p. 396).

Design is an ill-structured activity in the sense that goals
and constraints are underspecified (Simon 1981). It often
involves a variety of people and so teaching and learning
from one another is important (Greenbaum and Kyng

1991). The relationship between scoping and understand-
ing the problem and problem solving is complex and
iterative (Schön 1983). Selecting suitable representations
of the artefact that is being created is, therefore, important
for exploring, testing, recording and communicating design
ideas and decisions.

Although all design work shares some characteristics,
there are important differences. One distinction between
differing types of design is ‘design as craft’ versus ‘design as
engineering’. Engineering design is ‘the use of scientific
principles, technical information and imagination in the
definition of a . . . system to perform pre-specified functions
with the maximum economy and efficiency’ (Jones 1981, p.
8). Design as craft, on the other hand, relies much more on
the tacit understanding which the designer has of both the
problem at hand and the materials being used. A further
distinction may be made between design as craft and design
as creative process where the focus is much more on
creating an enjoyable and stimulating user experience than
it is on economy and efficiency.

Human–computer systems design (HCSD) may be taken
as a general term for any system involving humans and
information technologies or other ‘information artefacts’.
In HCSD the design as craft versus design as engineering

Cognition, Technology & Work (2002) 4:180–196
Ownership and Copyright
Springer-Verlag London Limited 2002

Cognition
Technology &
Work

debate has been discussed by Dowell and Long (1989,
1998). The central tenet of the Dowell and Long argument
(Dowell and Long 1998) is that they would like to see a
move towards design as engineering in the development of
human–computer systems (HCS). This is characterised,
they argue, by four major elements; a commitment to
shared models, values which guide the solution to a
problem, symbolic generalisations (engineering principles)
and exemplars that demonstrate effective use of models,
values and generalisations. As Dowell and Long point out,
unlike other areas of engineering, the development of HCS
has few physically grounded concepts at its disposal. The
bridge designer has well-developed models of the tensile
strength of materials, the interaction of materials with
environmental factors and the relationships between
strength and weight. Such representations have been
tried out many times in practice and have been shown to
be useful and successful representations for bridge design. In
human–computer system design there are a few physically
grounded concepts dealing with motor limitations, auditory
and perceptual constraints and so on, but most of our work
is concerned with conceptual structures, with information
presentation and exchange. In developing HCS we have to
deal with what happens inside people’s heads and here we
can only make conjectures as to what the most suitable
representations are. There is still considerable debate about
what constitutes cognition (e.g. Lakoff and Johnson 1999;
Gibson 1979; Hutchins 1995) and about the importance of
cultural, historical and sociological aspects of design (e.g.
Nardi 1996).

Dowell and Long (1998) appears as the ‘target paper’ in
a special issue of the journal Ergonomics. Ten commentaries
on this paper are presented by researchers in the field and a
response to these provided by Dowell and Long (Ergonomics
1998). These different points of view indicate that HCS is
far from being a discipline with clearly understood models,
values, principles or exemplars. Indeed over the years
competing methods and models for both the process and
products of its development have been proposed. For
example, in human–computer interaction (HCI), there is
no universally agreed conceptualisation or theory; there is
the question of whether we interact with the computer or
we interact through the computer (Bench-Capon and
McEnery 1989; Barlow et al 1989); there is an issue
concerning the importance of the concept of a ‘task’
(Benyon 1992; Diaper and Addison 1992) and the task–
artefact cycle (Carroll 1990). Other people (e.g. Fischer
1989; Storrs 1989) argue for a communication model of
HCI in which there is ‘an interplay between [human]
mental processes and external computational and memory
aids’ (Fischer 1989, p. 45). Others emphasise the impor-
tance of context and the social dimension of HCI (e.g.
Nardi 1996) and others a mixture of ethnography and
distributed cognition. Some advocate an object-oriented

approach to systems development (e.g. Booch 1994),
scenario-based design (Carroll 1995) or ecological ap-
proaches (Vicente and Rasmussen 1992). Domain model-
ling has recently emerged as an important topic (Sutcliffe
et al 1996; ASE 1998) and elsewhere concepts in software
engineering (Parsons and Wand 1997) and ‘ontologies’ are
a keen subject of debate (e.g. Guarino and Poli 1995;
IJHCS 1997).

It appears timely, then, to review the nature of the
design problem that faces the developers of HCS and to
consider some of the impact that different representations
and different conceptualisations may have on their
activities. The focus of this paper is very much on models
for design, and although it does touch upon a number of
philosophies and empirical theories the central part of the
paper is primarily pragmatic. Of course, having an effective
theory to underpin a design approach is useful because it is
the theory that enables the designer to observe phenomena.
This paper looks more at how theories have been embodied
in design methods than it does at the theories themselves.

Green (1998) opposes the idea of a single model of
developing HCS by arguing for a number of limited
theories each of which provides a useful perspective. The
aim of this paper is to place competing methods side by side
in order to better see their strengths and weaknesses. The
central tenet of the paper is that different views of both the
HCSD process and the different abstractions, or models,
that are produced during the design process have varying
degrees of utility for designers. In Section 2 a brief review of
the concept of a model is presented. Section 3 provides a
broad-brush classification of the different influences that
have impacted HCS and Section 4 offers a discussion of
these. The conclusion brings us back to the central debate
about theories and paradigms resulting from the emergence
of highly distributed computing environments and design-
ing for ‘non-work’ settings.

2. MODELS

If we wish to think about HCI, and successfully engage in
HCSD, we need to employ appropriate representations or
models. Models are devices for understanding, commu-
nicating, testing or predicting some aspects of some system;
they are the mediating artefacts of design. Models abstract
some domain of interest by hiding some details so that the
important aspects stand out. They are ‘professional’
languages that both constrain and focus a discourse by
limiting the range of concepts that can be expressed in the
language (Kangassalo 1983; Benyon 1997). Models provide
a certain perspective on a domain by employing abstraction
mechanisms that are reflected in the content and the
structure of the concepts employed by the model.

Abstraction mechanisms involve combinations of cate-
gorisation, or classification (treating a class of objects as a

Representations in Human–Computer Systems Development 181

single object) and aggregation (grouping related things
together and treating the group as a whole). Different forms
of abstraction are appropriate for different aspects of design.
For example, Kao and Archer (1997) identify three types of
abstraction. Horizontal abstractions focus on a number of
facets of the problem at a given level of detail, vertical
abstractions present several levels of detail along a single
dimension of the problem and general abstractions serve to
link these other two together. They use this classification of
abstraction to suggest various aids that could be provided
for the designer.

Modelling is difficult. A model will be more or less
effective for a given purpose according to the characteristics
(both conceptual and physical) possessed by the model and
the relationships between those characteristics, the systems
or domain that is the focus of the model, the modeller and
the recipient of the model. A model must possess the
necessary structure and processing capability to fulfil its
purpose. The analytic, explanatory and communicative
power of a model arises from the structure, operations and
constraints which that model is able to capture (Kangassalo
1983). A model must also have suitable physical character-
istics such as an appropriate notation. Any representation
needs to be considered in terms of its usability; for the
purpose at hand, for the producers of representations and the
consumers of those representations (O’Neill et al 1999).

It is important to recognise that models are the mediating
artefacts of the design process. From the scale models of a car
designer, to the CAD models of an architect, the
mathematical models of a mechanical engineer or the
diagrammatic models of a computer programmer to the
storyboards of a film director or the notation of a song writer,
we can see abstractions of the finished product being used as
part of the design process; whether craft, creative or
engineering. In order to understand where and when
models are effective and how models fit in to the modelling
process, we need to understand some principles of models.

2.1. Aggregation and Classification

The definition of a model given above is that it is an
abstract representation of something that suppresses
unnecessary detail. This suppression of unnecessary detail
can be achieved in two ways. Firstly, a model can group
related things together and represent just the aggregate
object, thus suppressing details. Another technique is to
represent a whole class of objects as a single object, thus
suppressing details of the individual objects. The first of
these techniques is known as aggregation and the second as
classification. Together they produce abstractions.

Aggregation is the process of collecting together a
number of characteristics of something and treating it as a
single thing. For example, I might identify an aggregate
item in a system as a ‘user’. In fact any user will have all

manner of characteristics, but for the purposes of designing
an interface a designer might consider some generic set of
attributes as constituting the aggregate ‘user’. A more
diligent designer might identify different types of users who
have different characteristics – different purposes in using
the system, different amounts of experience, etc. These
different types share some characteristics with the generic
‘user’, but differ in others. Aggregates are common in
information systems development; an entity is an aggregate
of its attributes, an object in object-oriented modelling is
an aggregate of its attributes and behaviours. Entity
subtypes might be identified, or objects might be defined
in an inheritance hierarchy to deal with the different
flavours of the generic type.

Once characteristics have been collected together into
aggregates, a classification has effectively been accom-
plished. Classification is the process of recognising that
various objects share certain characteristics and can
therefore be treated as a single thing. We are able to
classify things in some way because we recognise that they
have certain shared characteristics that are of interest for
the purpose at hand.

Classification of objects means that we can represent
and discuss a complex situation in simpler terms. As we
deal with the more abstract concepts, we make general-
isations about things and as we move towards the more
concrete objects we make specialisations. Selecting appro-
priate classes or categories and identifying the defining
properties which determine whether or not something
belongs to a class is an area that has been studied by
philosophers over many years. One of the most famous
examples is Wittgenstein’s (1953) discussion of the class of
games – what are the defining properties which allow us to
treat football, chess, card games, board games, ring-a-ring-
a-roses and so on as a single class: games? The observer will
find many overlapping properties, but not a single property
which connects them all. More recently George Lakoff has
discussed classification in his book Women, Fire and
Dangerous Things (Lakoff 1987) and highlighted how
different people classify things in different ways. Indeed
the title of his book is chosen because these seemingly
diverse things are classified as belonging to the same
category by the Australian aboriginal language, Dyirbal.

2.2. Structure, Function and Purpose

In addition to using abstraction, models may focus on
different aspects of the artefact being modelled. The
modeller can look at the structure of the artefact, the
functioning of the artefact or at the way the artefact
changes when things happen to it.

A structural view of some artefact or system focuses on
the main entities or objects that are in the system and how
those objects are related. For example, the structural view

D. Benyon182

of a car would describe a car in terms of the main
components – engine, gearbox, drive shaft, brakes and so
on. A functional view focuses on how some substance, or
some object, moves through the system. In the example of a
car, we could look at how fuel flows though from the fuel
tank to the engine, and how it is transformed into exhaust
gases and flows out through the exhaust system. Another
functional view might focus on the braking system and the
flow of hydraulic fluids. The third view of a system focuses
on the dynamics of the system, how it moves or changes
from one state to another. This view is concerned with how
the structure and functioning of the artefact are related and
the behaviour of the system that results.

The three views of systems described above are
complementary and interrelated. Notice how the different
views interact. Certain functions can only occur when the
system is in certain states and certain functions change the
state of the system or of certain objects in the system.

The relationship between structure and function must
be taken into account with the level of abstraction at
which the object or domain is being viewed, since a
structural view at one level of abstraction is a functional
view at another. If the focus is on the car moving along a
road, the functional view is of the movement of the car and
its interaction with the road. Thus the structural view is of
car and road as aggregate objects. If the focus is on the
operation of the braking mechanism, the level of abstrac-
tion shifts to consider the structural relationships between
objects such as brake disks, levers and so on and a
functional view of how these work together to form a
braking system. Vicente and Rasmussen (1992) provide a
more thorough discussion of abstraction hierarchies. The
appropriate view and the appropriate level of abstraction at
which to describe some domain or system will depend on
the purpose of the modeller.

At a given level of abstraction the designer can look at
the system or domain from one or more of three
perspectives. The intentional level of description is
concerned with how the system relates to entities external
to that system (at a particular level of abstraction). The
conceptual or logical level focuses on the function and
structure of the system – on its semantics. The physical
level is concerned with how things work in a physical
world. Evidence that these three levels are necessary come
from a number of areas such as Rasmussen’s consideration
of mental models and HCI (Rasmussen 1986) and the
philosophical arguments of Pylyshyn (1984) and Dennett
(1989). Pylyshyn argues that what ‘might be called the basic
assumption of cognitive science . . . [is] that there are at least
three distinct, independent levels at which we can find
explanatory principles . . . biological, functional and inten-
tional’ (Pylyshyn 1984, p. 131, italics in original). He
relates these terms to those used by other writers. For
example, Newell (1982) calls them the device level, symbol

level and knowledge level. Pylyshyn himself prefers the
terms physical, symbol and representational (or semantic)
level. In Dennett’s terms these are the physical stance, the
design stance and the intentional stance. Mappings
between the levels are required in order to progress from
one level of description to another.

Designers will move rapidly between different types and
levels of abstraction during the design process, and different
representations will be more appropriate at different times.
At whatever level of abstraction the domain is modelled it
is important to consider the appropriateness of our model in
terms of the structure (and hence constraints) that it can
represent, the functions that it supports and the structure/
function relationship (the behaviour). In particular, it is
important to consider the concepts that the model employs
and the physical manifestation of the model.

2.3. Concepts in Models

Another important aspect of a representation is that the
concepts that it employs constitute the ‘material’ from
which that model is made. The focus, or object, of a
representation is some domain or system that the modeller
is interested in and which demonstrates (for the modeller)
some stability and coherence. The concepts that the
modeller chooses to use as the basis of the representation
have a significant impact on the effective use that can be
made of the model. This important distinction between the
object of a model and the concepts from which it is
constructed is often overlooked.

For example, if I perceive something in the world that I
call a circle, then I can choose to model this in a variety of
ways. An algebraic model of a circle, x2 + y2 = z2, is not a
model of algebra. It is a model of a circle made from algebra.
This could be contrasted with a model of a circle made from
programming constructs expressed in a language such as
Logo (which may be represented as: To Circle, Forward 1,
Right 1, Circle). A graphical representation of a circle is
another representation. Notice the different structures,
constraints and functions provided by these models of a
circle and the different purposes to which they can be
effectively put. The algebraic model allows me to
manipulate the formula and to deal with different sizes of
circle, but gives a very poor idea of its shape. The graphical
representation immediately conveys the shape concept and
the computer program lets me control things that would
form circles. None of these is best in all circumstances; it
depends on the purpose of constructing the model.

Consider the difference between an entity-relationship
(E-R) model of a database and a relational model of a
database. The E-R model is a graphical representation,
allowing designers and users to see the overall structure of
the database clearly. It can be used to identify areas of
semantic ambiguity in the database by tracing through the

Representations in Human–Computer Systems Development 183

relationships in order to verify that these ‘paths’ through
the data are consistent (Benyon 1997). The relational
model does not facilitate this particular activity, but it does
allow for structured browsing of the data using a query
language such as SQL. The designer will need to develop
both these types of model during the development of a
database. During the development of these models the
designer will use other representations such as functional
dependency theory and normal form analysis to ensure that
the models accurately reflect the user’s understanding of the
data in a domain.

2.4. Physical Form

In addition to considering the conceptual ‘stuff’ that a
model is made of, we need to consider the physical
representation – the notation. Green (1995) discusses the
‘cognitive dimensions’ of notations and how these can
affect their usability. Some notations force the designer
into making a ‘premature commitment’ to some object or
concept before he or she is ready to do this. Some notations
are difficult to change (they are ‘viscous’) and hence
encourage designers to remain with a suboptimal design.
Some notations are difficult to understand (e.g. diagrams
with lots of crossing lines), while others can use colour to
help clarify different semantics. For example, O’Neil et al
(1999) discuss drawing task models on a whiteboard using
different coloured pens.

As a final example, consider maps as models of a terrain.
Maps are generic models which come in a variety of
physical manifestations. Maps are abstractions from the
domain (the terrain) which emphasise some features while
suppressing others. If one wants to find a path from one
village to another then a relief map (one that shows only
the height of the land) is unlikely to be of much help since
it does not include the concept of a path. Its purpose is not
appropriate for the purpose at hand. If we have a map of the
scale 1:50,000 this may be more suitable for the purpose of
finding a path (but is less suitable for seeing the distribution
of hills and valleys). The map may have been designed to
show fields, fences, rivers and paths and so contains the
required functions (the ability to follow a path on the map)
and the necessary structure (the concepts of path, etc.) to
fulfil its purpose. However, the map may be so poorly
designed at the physical level (e.g. it uses black lines to
show boundaries and paths and rivers) that it is not usable
for its purpose.

2.5. Modelling Human–Computer Systems

The question for HCSD, then, is which representations
should be used for which purpose. The domain of HCS is
very rich; it is not a simple concept such as a circle. The
HCS domain is a complex combination of structures and
behaviours involving people, technologies, environments

and purposes. We need to be confident that the
representations which we use in HCSD have an appropriate
structure and an appropriate physical representation so that
they can serve their purpose. Moreover, since HCSD is
concerned with developing HCS, the concepts which
underlie any given representation must be concepts that are
suitable for representing people and their interactions with
the other people, artefacts and information which collec-
tively make up the human–computer system.

The purpose of HCS design is to develop effective HCS.
It follows that any model which we use must be oriented
towards that purpose. Even with this declared purpose there
are many levels at which we can view HCS. At the
organisation level we might wish to consider the design of
working practices and the impact of new technologies on
organisations. At the environmental level, we might wish
to look at health and safety issues or office layout. Another
view at this level might be concerned with legal and ethical
issues concerning HCS. We may want to look at
information flow, at how knowledge is constructed and
represented or how it is distributed through the system. At
a physical level we could examine the use of colour or font
style on the usability of systems, at the physical or cognitive
demands that systems make on people. At a more detailed
physical level we may consider hardware and software issues
concerned with rendering accurate representations of
objects or supporting various styles of interaction.

We also need to consider what we mean by ‘effective’.
The Dowell and Long engineering view sees effectiveness
as the resource needed to learn and use a system. Vicente
(1999) sees effectiveness as safety, productivity and health
with respect to computer-based work. Like so many other
features of HCSD ‘effectiveness’ is a term that has been
interpreted and reinterpreted in different ways over the
years.

Developing suitable representations, or models, of an
artefact is fundamental to all design activities. The
representations employed may be formal or informal,
precise or vague and may be used for very different
purposes within the overall design activity. Different
representations will be more or less useful depending on
the level of abstraction at which we which to view the
domain of HCS. One of the skills of the designer is
selecting an appropriate representation for the task at hand.
Another is making good use of that representation. In the
next section a review of the main methods and paradigms
in HCSD is presented.

3. MODELS AND CONCEPTS FOR
HUMAN–COMPUTER SYSTEMS DESIGN

Before looking at some generic methods and models in
HCS design, it is worth spending a few paragraphs looking
at a history of the discipline. The following is an extended

D. Benyon184

version of a similar history that appeared in Benyon and
Imaz (1999).

Although the subject of HCI did not really enter onto
the agenda until the early 1980s, the previous two decades
had seen several attempts at developing methods, ap-
proaches and modelling techniques for information systems
design. The early days of systems analysis and design
evolved methods and models which focused how the
existing system worked. Representations of the system,
usually in terms of a flowchart, which provided a graphical
representation of the existing system, were produced which
led to a computer system and a file structure to support the
particular application (Benyon and Skidmore 1987).
Where systems were well understood and primarily cyclical
in nature, such as monthly accounting or payroll systems,
they could be computerised without too much trouble.
However, these methods of analysis began to break down
with the introduction of more interactive working, when
other people wanted to use the data which had been
gathered and stored for a specific application and when
computers were being applied to less well-defined activities.
During the 1970s systems analysis fundamentally changed
following the publication of Ted Codd’s seminal paper
(Codd 1970; see also Codd 1982) on the relational data
model. The ‘data-centred’ movement in information
systems development looked to distance itself from current
implementations (i.e. to be more abstract) and this led to
dataflow diagrams (e.g. DeMarco 1979) and the E-R
diagram (Chen 1976). The movement faltered with the
development of many competing methodologies (Olle et al
1982, 1983) and finally gave way when the object-oriented
(OO) paradigm, inherited from software development,
began to be applied to analysis and design as well as to the
construction of systems. Since the early 1990s, OO
methods have been paramount (e.g. Booch 1994).

The concerns of HCSD, as we know it today, began in
the sixties but were most clearly expressed in the late 1970s
through the participative and socio-technical approaches to
systems development, a movement which remains impor-
tant today (Greenbaum and Kyng 1991; Karat 1991; Kyng
and Mathiassen 1997). Methods and models encouraging
user participation in design developed alongside models of
users interacting with computers derived from task analysis
(e.g. Moran 1981; Diaper 1989). As graphical user
interfaces began to dominate HCSD, so task-based and
OO methods followed and the rather difficult, grammar-
based task models were replaced by graphical notations
with the focus on user objects. These became embedded in
more proscriptive HCSD methodologies (such as STUDIO;
Browne 1994) and tool-supported systems (e.g. ADEPT;
Johnson et al 1995). The somewhat different traditions of
cognitive (systems) engineering (Hollnagel and Woods
1983; Rasmussen 1987) and computer-supported coopera-
tive working (CSCW) have also contributed to the current

position in HCS. All this took place as the philosophy of
mind was developing with the everyday psychology and
seven-stage model of interaction of Norman (Norman and
Draper 1986). The strong cognitive psychology of the
1960s and 1970s had put the focus on user tasks and the
detailed analysis of tasks deriving from the workflow
analysis which had happened during the 1960s. Influential
philosophical developments by, for example, Winograd and
Flores (1986) and later Hutchins’ (1995) work on
distributed cognition, and the introduction of activity
theory into HCSD (Bødker 1990; Bannon 1991), have
changed the influence from cognitive tasks to situated
action. More recently, context has become an important
issue in HCSD through techniques such as scenario-based
design (Carroll 1995) and contextual inquiry (Beyer and
Holzblatt 1998) and further developments in cognition
such as cognitive semantics (Lakoff 1987; Lakoff and
Johnson 1999). The challenge for the future will lie in the
design of information appliances (Norman 1999; Bergman
2000) and in the evaluation of usability in household and
other non-work settings (Sloane and Van Rijn 2000).

Throughout the history of HCS development many
models and methods for the design of such systems have
been produced. In the next nine subsections we look at a
number of generic models and methods which are used in
HCSD and consider them from the perspective of the
concepts that they employ (i.e., the ‘stuff’ that they are
made of). This will help us to see the structures, functions
and purposes that they support. It is not our intention to
describe all the detailed instantiations of these generic
models, but where appropriate we do comment on the
usability of some of the physical manifestations of the
modelling approach.

3.1. Data-Centred Models

Data-centred models represent the flow and structure of the
data in a system. The two main models are the E-R model
(Chen 1976) (representing structure) and the dataflow
diagram (e.g. DeMarco 1979) (representing processing). A
number of ‘data-processing models’ (Benyon 1997) describ-
ing the structure/function relationships such as state
transition diagrams (STDs) and entity–life history (ELH)
diagrams (Rosenquist 1982) are also used in most data-
centred methods.

All of these models use as their basic concept the notion
of a data item or data element. A data element consists of
one or more symbols, a name (and sometimes a more
comprehensive description of the meaning of the data
item) and a context. The name, description and context
ascribe the semantics to the data element. Data elements
are generalisations of the actual and potential values which
that data item can take – the domain of the data element.

Another level of abstraction in data-centred approaches

Representations in Human–Computer Systems Development 185

is provided by something that is usually known as an entity.
An entity is an aggregation of data elements, expressing the
semantics that certain data elements belong together. Once
these groupings have been established, the designer can
refer to the collection of data elements – the entity – by
name, thus suppressing detail which would otherwise
clutter the model. Relationships between entities –
expressed in terms of the number of instances of one
entity which are associated with the instances of another
entity – can then be considered. The physical representa-
tion of entities and relationships is usually in diagrammatic
form of a E-R diagram, but it can equally be represented as a
relational model which facilitates different manipulations.
Representing the domain in terms of data elements, how
they are grouped together into entities and the relation-
ships that pertain between entities describes the structure of
the domain.

Another way to model the domain is to look at how data
flows between processes. A process, or functional, model
made of data concentrates on the data which is strictly
necessary for processing to occur. Functional data models
are abstractions of systems which strive to be as
independent of the current system as possible; the idea is
to look at the logical flow of data through a system which is
required if the system is to achieve a certain purpose. This
may be contrasted with a model of the physical system
(such as a flowchart) which models the movement of
physical objects such as documents and the control flow
(i.e. the sequencing of actions) of particular implementa-
tions. Functional data models concentrate on the data
processing that is strictly necessary for some process to
function in a given domain. They show the data that is
necessary for certain processes to happen.

Data-centred models have a theoretical basis which dates
back to Langefors (1967) and Sundgren’s (1975) work and
have a basis in terms of semiotics (Stamper 1977). They are
central to many information systems development ap-
proaches (Avison and Fitzgerald 1996). The concepts of
data element, entity, relationship and dataflow focus
attention on the information in a system. Focusing on
data and information has been applied to HCI (Benyon,
Green and Bental 1999), enabling designers to highlight the
difference between designers and users models, where the
interface fails to reveal an underlying conceptual structure
and issues of distribution of information (Green and Benyon
1996). Data-centred models can be used as the basis for
selecting interface metaphors (Braudes 1991) and for the
development of interactive visualisations (Tweedie 1995).

3.2. Task-Based Models

Task models seek to represent the domain in terms of tasks
and actions. The emphasis of task-based approaches is
primarily on human tasks and the need to understand what

people (rather than computers) have to do. Task models
were developed because of the emphasis in HCI on people
interacting with computers and the dominant information-
processing paradigm of cognitive psychology.

Task-based approaches have as their basic concept the
idea of a user ‘task’ which may be defined as ‘a goal together
with some procedure or ordered set of actions that will
achieve that goal’ (Amodeus 1994). Hence other basic
concepts include ‘goal’ (a state of the environment or agent
which is desired by the agent) ‘operation’, ‘simple task’,
‘unit task’ or ‘action’ (a task which involves no problem
solving or control component) and ‘plan’, ‘method’ or
‘procedure’ (a sequence of tasks, sub-tasks and/or actions).
Task-based approaches date back to the earliest exposition
of HCI theory (Card et al 1980; Moran 1981) and continue
to be popular today (e.g. Browne 1994; Lim and Long
1994).

The wide variety of task-based models, the alternative
notations which are used and the different uses to which
they are put have a significant impact on the usability of
different manifestations. The notation used in task-based
methods is either based on a grammar type of representa-
tion, particularly for more detailed task description
languages such as TAG (Payne and Green 1989) and
GOMS (Kieras and Polson 1985), or it is based on the
structure chart notation. Structure charts are a graphical
notation which represent a sequence of tasks, sub-tasks and
actions as a hierarchy and include notational conventions
to show whether an action can be repeated a number of
times (iteration) and the execution of alternative actions
(selection). Task-based models are able to show the
sequencing, iteration and selection of sub-tasks and actions
and to show the allocation of tasks to human or to
computer. The grammar notations of methods such as
GOMS often become unwieldy if applied to large systems,
but do provide a certain rigour which may provide useful
insight into the detailed design of an interaction (Gray et al
1990).

Task-based models are representations of the function-
ing of a domain. They concentrate on the mental and
physical actions which users and systems perform given a
particular design. Although they can be used in a more
abstract way to describe generic tasks in a domain, task-
based models do not show the flow of information through a
system, nor do they represent the system’s structure.
Structure, where it is shown, is typically represented
through object models.

3.3. Object-Oriented Models

In OO methods of systems development the domain is
represented in terms of the objects which exist, the
relationships between objects and the messages which are
passed between objects. The proliferation in object-

D. Benyon186

modelling methods has resulted in some confusion over
exactly what is being represented, how it should be
represented and how to approach domain modelling using
the OO approach. The best-known methods included
Booch (1994), Rumbaugh et al (1991), Jacobson et al
(1993), Shlaer and Mellor (1992), Coad and Yourdon
(1992) and Wirfs-Brock et al (1990). Towards the end of
the century the first three of these became united in the
Unified Modeling Language (UML; http://www.rational.
com/uml).

Many claims have been made for OO techniques, most
notably that the approach leads to a more natural design.
For example, Rosson and Alpert (1990) claim that ‘A
particularly attractive aspect of OO design is that it seems
to support a better integration of problem and solution’
(p. 361) . . . while admitting that ‘very little empirical
evidence exists concerning the naturalness of objects as
ways of representing problem entities’ (p. 363).

Objects are the basic concept in OO approaches.
Objects are defined as ‘an encapsulation of attributes and
exclusive services [behaviours]; an abstraction of the
something in the problem space . . .’ (Coad and Yourdon,
1992). Davis (1993), like many OO theorists, stresses that
objects correspond to real-world entities. The fact that
objects encapsulate structure and behaviour is central to
the distinction between objects and entities in data-centred
methods. OO modelling is a model of structure – it is the
objects that are paramount. The system’s processing is
defined in terms of the objects – different classes of object
allow for different types of processing. The notation for
object diagrams (i.e., the physical representation of the
model) varied considerably from E-R diagrams to ‘round-
tangles’ to represent objects to cloud type diagrams (Sully
1994) until the standardisation that occurred through the
UML development.

The claims for the benefits of OO techniques include
abstraction and encapsulation (otherwise known as ‘in-
formation hiding’). Objects are viewed from the outside
and users need not be concerned about how they are
implemented. Objects can send and receive messages; they
encapsulate the structure and processing which enables
them to deal with those messages. Other features of the OO
paradigm such as polymorphism (that different object
classes will treat the same message in different ways),
inheritance, late binding and tight cohesion relate more to
the programming benefits than to any conceptual benefits
of the approach.

OO methods are not based on any underlying theory of
cognition or action. The philosophical basis for OO
approaches is derived instead from the benefits that come
from OO programming; non-functional decomposition
(i.e., a structural decomposition as a reaction against the
functional decomposition of such techniques as dataflow),
reuse and inheritance. The fact that users interacting with

graphical user interfaces use interface objects and the idea
that users themselves think in terms of objects has led to
the popularity of these approaches within HCSD and a
number of HCSD methods have been produced (Redmond-
Pyle and Moore 1995; OVID 1997).

The ideas of standard structures have been extended
from simple objects to complex ‘patterns’ of both systems
and interactions. Recent approaches to HCSD now often
talk of pattern languages and research seeks to establish a
definitive list of interaction patterns. Sutcliffe and Maiden
(e.g. Maiden 1998; Sutcliffe and Maiden 1998) have
developed object models of a number of generic systems
which they tie in with generic scenarios. The NATURE
system has a psychological underpinning in terms of
categories and mental schemata.

3.4. Systems

Since the earliest days of information systems development,
systems theory has been an important influence (e.g. Laszlo
1969). Systems theory has provided a number of useful
concepts including ideas of control (feedback, feed-forward,
etc.), which come from cybernetics (and which we return
to in Section 3.8). Systems theory has also been manifest in
a ‘hard systems’ approach and through socio-technical
systems design, but it is with the ‘soft systems’ proposed by
Checkland (1981) which is more the concern of HCSD.
The soft systems approach argues that instead of teasing
HCSD apart into humans, tasks, interfaces, computers and
so on, it is better to begin with a more basic concept: a
system. A system is a more or less complex object which is
recognised, from a particular perspective, to have a
relatively stable, coherent structure (Checkland 1981).
For example, I might wish to consider a human interacting
with a computer as a system. Another person might wish to
consider the computer as a system in its own right. Another
person might wish to consider the users of networked
computers distributed across the globe as system. Check-
land (1981) emphasises the importance of human-activity
systems as a particular class of systems that, because of the
human component, cannot be simply engineered.

The concept of a system can be applied at many
different levels of abstraction and from many perspectives.
Checkland (1981) stresses the need to declare explicitly, as
part of the system definition, the perspective (or Wel-
tanschauung) from which the phenomenon is being
considered as a system and the aspects of the system
which are considered to be stable and coherent. This also
results in identifying the system’s boundary.

Systems theory recognises that all systems are composed
of other systems and exist within wider systems. Systems
interact with other systems. Systems interact with their
subsystems, with their super-systems and with systems at
the same level of abstraction. The interaction of a system’s

Representations in Human–Computer Systems Development 187

component subsystems results in the system having proper-
ties which emerge from the relationships existing between
its subsystems. In other words, systems possess properties
which are not possessed by any of its subsystems.

Thus the main concepts from systems theory are the
system concept itself, the declaration of the perspective
from which the boundary of the system is determined and
the emergent properties possessed by that system. The
notion of a system underlies many more specific approaches
and has been applied extensively in more general informa-
tion systems design (e.g. Avison and Fitzgerald 1996).
Physically, system models are often realised as ‘rich pictures’
which show the main features of the system – the customers,
actors, transformations, Weltanschauung, owners and en-
vironment – in diagrammatic and pictorial form.

3.5. Semiotics

Semiotics is the study of signs and has been exploited in
many areas of human endeavour such as linguistics,
anthropology, psychoanalytic psychology and literary
theory (Sturrock 1986). This wide range of applications
has resulted in a number of different views on the role and
structure of semiotics. In computer science and HCSD
semiotics has been left relatively untouched. This may seem
surprising since semiotics deals with the transmission and
interpretation of signs – something fundamental to HCI.
The exceptions to this include a detailed semiotic view of
HCSD (Andersen 1990) which aims to develop useful
taxonomies of computer-based signs and an approach
known as semiotic engineering (de Souza 1993).

One of the weaknesses of semiotics (which is surely also
one of its strengths) is the very general concept of a sign.
Indeed semiotics has been called the mathematics of the
social sciences as this concept is so broadly applicable and
has been applied in many different ways at many different
levels of abstraction. However, it is important to remember
that all signs must be culturally determined and, very often,
individually determined. That is to say, individuals and
people from different cultures (whether ethnic, educa-
tional, work and so on) will interpret signs to stand for
different things.

Signs work by bringing together some ‘system of
signification’ with some signals. We can think of the
signals as the syntactic part and the system of signification
as the semantic part of the sign. Once these two are brought
together the sign can represent, or stand for, something
else; it can mean something. Such a simple characterisation
of the semiotic process masks a number of issues such as the
‘infinite semiosis’ or ‘hermeneutic circle’ that says that
things can only be interpreted in terms of things that have
already been interpreted which in their turn were
interpreted and so on.

The issue about where this ‘system of signification’

comes from is also important. Ultimately it has to be
supplied by the person, or agent, that receives the signals.
But some of it may be carried by the signals, particularly if
they are themselves complex signals such as a building
in a city. It is this relationship – between the signal(s)
and the things signified – which is a sign. Eco (1976)
emphasises that a sign is always a sign-function: the sign-
vehicle for the syntactic part of the sign (the signals once
they are associated with a semantic system) and sign
content is the semantic part of the sign. ‘Symbol’ is used by
a number of authors (e.g. Rasmussen 1986) to indicate the
thing which the receiving system ‘understands’ – i.e., the
sign contents.

Thus the basic concepts underlying semiotics are: the
signifier (or sign-vehicle), which comprises the signals
when placed in a relationship with a system of signification;
the signified (or sign content), which is the (conceptual)
entity associated with a signifier when put in relationship
with a system of signification; and the sign (or sign-
function), which is the relationship between the signifier
and the signified. Both the sign-vehicle and the sign
content have two components: a substance representing
what each is and various different forms, or representations
which it may take.

Although HCSD has not seen many applications of
semiotics, the time for an application of these concepts may
now have arrived as we try to develop ‘intelligent’ interface
agents, as we increasingly consider the different media of
presentation and in order to deal with people interacting
with multiple embedded systems. The ability of an agent to
receive and interpret signs leads to a number of questions
which we can apply to agents. For example, we can ask:
What signals are detectable? What semantic systems does
the system have access to? What ability does it have to
represent the context of the interaction? What goals,
motivations and purpose are represented in the system and
to what extent can these be used in the system’s reasoning?
And so on (Benyon 1993).

Semiotics has not yet been made available to HCSD
developers in the form of a method or modelling technique,
which may explain its lack of uptake in the discipline. Our
purpose here is not to advocate which method, or concept
is best. Semiotics represents a different conceptual founda-
tion for thinking about HCSD.

3.6. Activities in Context

During the mid–late 1980s and into the 1990s, HCSD has
witnessed a rise in methods and approaches to design which
emphasise the need to see human activities in context.
Suchman’s (1987) criticism of the concept of a ‘plan’ – a
pre-mediated sequence of actions directed towards a well-
defined goal – and her argument that human action was
situated within a context led to a number of approaches to

D. Benyon188

HCSD which sought to focus on human activities. Two
important concepts are introduced in such approaches. The
concept of an ‘activity’ consists of a subject (one or more
individuals), an object (held by the subject and motivating
the activity), actions (goal-directed and conscious processes
that must be undertaken to fulfil the object) and operations
(former actions that have become routine and unconscious
with practice) (Nardi 1996). An activity is . . . ‘a system
that has structure, its own internal transitions and trans-
formations, its own development’ (Leont’ev 1978, p. 50).
An activity is directed toward a certain object (i.e., a
purpose or goal) and is mediated by one or more artefacts
(which may include pieces of software, ‘thinking’ artefacts
such as language and so on). Activities can only be under-
stood given some knowledge of the object, the motive,
behind the activity and importantly need to be seen within
a cultural and historical context; the term CHAT (cultural
historical activity theory) is often used to emphasise this.
The essential mediating nature of artefacts in any
interaction has led Kaptelinin (1996) amongst others to
talk about computer-mediated activity instead of HCI.

The second concept is that of ‘context’, although this is
much less formally defined. Nardi (1997) describes the
importance of context as follows: ‘it’s not just the users
themselves, but the total environment they are working in,
including other technical and cultural resources that are
important’. The emphasis is on understanding user actions
within this context. For others, the concept of ‘context’ is a
combination of notations which aid envisionment, design
rationale, scenarios and more formal notations needed to
communicate contextual information to designers (Cock-
ton et al 1996). Still the issue of context as something that
surrounds an activity against context as something that
holds the activity together is open for debate.

Activity theory has its origins in the work of the Russian
psychologist Vygotsky, beginning in the 1920s, but has only
recently been recognised in the Western scientific com-
munity (e.g. Leont’ev 1978; Bødker 1990; Bannon 1991).
These approaches take into account the context of the
work and concentrate on the placing of users within a work
system. Because of this contextual nature of activity theory,
methods of systems analysis are often based on ethno-
graphic studies of users in their work situation. Activity
theory forces designers to consider the structure and level of
human interaction in an activity and the level at which
support is provided. Designers need to attend to the social
interaction surrounding computer use and the interaction
between individual and group objectives. The meaning of
interactions is a function of the activity in which these
interactions occur. It is not possible to completely under-
stand what these interactions mean without the context.

Contextual inquiry (Beyer and Holzblatt 1998) is a
related method in that it emphasises understanding
context. Others which emphasise understanding context

include participative and cooperative design approaches
(see Greenbaum and Kyng 1991).

Approaches which emphasise understanding and design-
ing activities in context focus on the behaviour of a system
– the relationships between structure and function – rather
than on independent views of each of these. There is little
formality in the physical representations used within
activity theory itself, but some of the applied methods
such as contextual inquiry do provide notations to help in
the analysis of activities in context. Kaptelinin et al (1999)
have made the ideas of activity theory more available
through a checklist and Engström and Escalante (1996) use
a triangular representation of person, artefact and object in
order to highlight the composition of activities.

3.7. Scenarios and Use Cases

Although scenarios and use cases came from different roots,
they have enough similarities for them to be considered
together as a generic model of HCS. Use cases came out of
OO analysis and design, particularly Jacobson (Jacobson et
al 1993), whereas scenarios have been used in HCSD in
various forms for some time. Rosson and Carroll (1995)
bring these two traditions closer together in that their
scenarios and OO design progress in tandem. In Preece et al
(1994) scenarios are considered alongside sketching
techniques, storyboards and snapshots as ‘envisioning’
methods for systems development. Scenarios and use cases
seek to describe ‘an envisioned task from a user’s
perspective’ (Rosson and Carroll 1995, p. 249). The
principle underlying using scenarios and use cases in
design is that they make user interactions with systems
concrete. They are closely allied with approaches that
emphasise contextual design (discussed in Section 3.6), but
additionally provide the basis for making the rationale
behind designs explicit. Claims analysis (e.g. Carroll and
Rosson 1992) and design rationale (e.g. Maclean et al
1991) can be explicitly stated when there is a concrete
scenario to describe. Exactly why certain design decisions
have been taken, the options that were considered and the
criteria which were used to decide between options can be
recorded and documented.

The concepts underlying scenarios and use cases are user
actions when interacting with a particular device. In this
sense, scenarios deliberately use concrete, rather then
abstract, representations. The philosophy on which this is
based is summed up by Rosson and Carroll (1995) as
follows: ‘this belief is founded on the general observation
that humans excel at reasoning about concrete situations’
(p. 270). Jacobson (1995) describes how use cases should
present a ‘black box’ view of the system. A use case model
defines the system’s behaviour and is developed alongside,
and orthogonal to, an object model. Jacobson employs a
graphical representation showing the interaction between

Representations in Human–Computer Systems Development 189

entities outside the system (‘actors’) and the use cases
which are inside the system. When an actor uses the
system, the system performs a use case and hence the use
cases describe the complete functionality of the system.
Jacobson’s use cases are a more formal representation than
scenarios and can be used throughout the development
process, so that a high-level case can be traced through the
system to the code that implements it.

Scenarios can be used throughout the design cycle –
from gathering ‘user stories’ (Imaz and Benyon 1999) to
conceptual (abstract) scenarios, concrete scenarios and
finally to use cases that can be used for implementation.
From user stories as requirements to scenarios for design
and use cases for implementation emphasises how a single
model in various states of formality can be used throughout
the development cycle. There can be little doubt about the
importance of scenarios and related ways of envisioning
designs, but there are few firm foundations that designers
can use, apart from broad guidelines, in order to structure
their use of scenarios. As with the models described in
Section 3.6, scenarios focus on behaviour rather than on
structure or functions. Physically, scenarios may be
manifest as short pieces of text, working prototypes or as
sketches and storyboards.

3.8. Work Systems and Cognitive Engineering

Cognitive engineering is the term for HCS development
preferred by a number of researchers (Hollnagel and Woods
1983; Rasmussen 1986; Dowell and Long 1989). Although
cognitive engineering came from the domain of process
control, and earlier expositions (e.g. Rasmussen 1987) may
have tried to distance cognitive engineering from HCI, this
is no longer the case. The principle underlying cognitive
engineering is that when designing computer systems or any
other ‘cognitive artefact’ we are developing a complete
cognitive system. ‘A joint cognitive system means that the
system boundary encloses a natural cognitive system – a
human being – as well as an artificial cognitive system’
(Hollnagel 1997, p. 40). Seeing the whole as a joint
cognitive system enables designers to recognise that this
system is more than the sum of its parts; it has emergent
properties (cf. Section 3.4).

Although the work developed separately, the ideas of
distributed cognition (Hutchins 1995), which recognises
that by designing a cognitive artefact it is not possible to
simply replace human intelligence in a system, seem to
underpin a cognitive engineering approach as does the
domain-oriented approach of Fischer (1989, 1998). De-
signers need to recognise that by developing cognitive
artefacts the nature of the cognitive processes in a system
are changed. Hollnagel’s approach utilises cybernetic
theories of control (such as feed-forward and feedback) in
addition to concepts such as ‘amplification’.

Dowell and Long (1989) and Long and Dowell (1998)
also use the term ‘cognitive engineering’ in their discussion
of HCI. Long and Dowell (1998) present their view of
cognitive engineering in terms of the ‘dualism’ of work
system and domain. On the one hand is a combination of
people (or in more general terms, agents) and devices
which constitutes a (joint) cognitive work system. On the
other is a domain: ‘an abstraction of the real world’. The
aim of cognitive engineering is to maximise the perfor-
mance of this system with respect to this domain. Their
conception highlights the need to see people using devices
as a system. It recognises that it is only within this whole
cognitive system that agents can formulate intentions to
change the state of the domain. By opposing the work
system and the domain, we gain the opportunity to
engineer the system. Long and Dowell use this conception
to define and measure the performance of the work system
with respect to the domain. They are able to discuss task
quality and provide definitions of the otherwise somewhat
nebulous HCI concepts of learnability and usability in
terms of the costs incurred by the different agents and
devices in the work system.

The basic concepts underlying cognitive engineering are
those of a joint cognitive system and a domain. In Long and
Dowell’s terms, the designer needs to consider design as the
development of agents and devices and abstractions; these
joint cognitive systems are the basic unit of analysis for
cognitive engineering. For Hollnagel, it is designing for
complexity, and designing to manage that complexity, that
is important rather than trying to design complexity out.
Lim and Long’s (1994) methodology for HCI design is a
concrete manifestation of the approach which concentrates
on a functional (task-based) view of the joint cognitive
system. Other approaches offer concepts and principles – a
structural view of cognitive systems – but no concrete
methodology.

An important approach to HCSD that has emerged from
the area of cognitive engineering is ‘the Riso genotype’
(Vicente 1998, 1999), which has led to ecological interface
design. Flach (1995) provides a number of perspectives on
the issues and includes chapters by others originating from
the Riso National laboratory, including Vicente and
Rasmussen and Pejtersen. There is much discussion over
the similarities between the psychology of Gibson (1979)
and designing systems that afford certain activities. From
our perspective, however, the most important feature is
probably the concept of a means–end way of describing the
domain. The ‘stuff’ of the representation is the relationships
between means and ends. At the lowest level this is
expressed in terms of some physical causes and effects and
at the highest it is concerned with purposes and the effects
that they have on the domain. The means–end hierarchy
has five levels which may be mapped onto the physical,
design and intentional levels discussed in Section 2.4.

D. Benyon190

Rasmussen and Pejtersen (1995) use this analysis to map
out different work situations.

3.9. Constructional and Interactional Models

Most of the models presented in the previous sections (with
the exception of OO and data-centred models) have been
concerned with the analysis and design of systems as
opposed to their construction. The designer cannot give a
scenario, or an activity description to a programmer and ask
her to implement it. In a recognition of this, much work
has continued on finding appropriate models which
software developers can use. The occasional coming
together of researchers in user interface systems engineering
and in HCSD (e.g. Benyon and Palanque 1996; Benyon et
al 1997) has demonstrated the huge gulf that exists between
the demands of good analysis and the demands of good
construction.

One area of debate concerns the appropriate software
architecture for HCS. The concerns of software architec-
tures are centred round reusability, maintainability, integ-
rity and so on. Although these concerns may seem a long
way away from understanding user intentions, or the
meaning behind their activities, unless the high level
models of analysis and design can be translated into the
models of software construction, then we will fail to
develop effective HCS. The European Amodeus project
(Amodeus 1994) did bring together these differing
perspectives, looking at models of interaction from both
software and cognitive positions. Models based on the ICS
framework (Barnard 1991; Barnard and May 1999) focus on
a cognitive interaction model was used alongside archi-
tectures such as PAC, resulting in an ‘agent-based’
architecture, PAC-Amodeus (Coutaz et al 1996). Software
architectures (reviewed in Coutaz, et al 1996) distinguish
between the conceptual (or abstract) and presentation
views of systems at ‘every level of abstraction’ (Coutaz et al
1996, p. 194). Inevitably detailed in their concerns,
architectures do reflect the purpose, conceptual and
physical levels of models described in Section 2.

Other models which seek to bridge the gap between
analysis/design and construction include the Interactive
Cooperative Objects (ICO) method, based on objects and
Petri nets (e.g. Palanque and Bastide 1996). This approach
seeks to use the same formalism to represent user task
structures as it does to represent internal software
structures. The method is manifest as a number of related
task and system diagrams. UAN (Hix and Hartson 1993)
represents the main objects of interest (mouse buttons,
pointers, etc.) and the tasks which are required to interact
with a system (click mouse, move pointer, etc.). UAN uses
a structured grammar notation and is most applicable at a
detailed level of design, but can be effective in representing
more general task structures.

The concerns of the models discussed in this section are
based around finding a formalism that allows the construc-
tion of software systems. With the popularity of OO
implementation, most of them use the concept of an object.
In order to accommodate the concerns of HCSD, many use
some form of task representation, usually more formally
expressed as, for example, a Petri net. The distinction
between abstract and presentation views of the object or
system is also emphasised. These interaction models stress
the behaviour of the system. Many such models use a
graphical representation with the added rigour of employ-
ing methods with formally defined semantics.

3.10. Discussion

In this quick tour through the representations used in
HCSD, we have tried to arrange and classify the models,
methods and approaches in a relevant way – relevant, that
is, for our purpose. The aim has been to include most of the
main influences on HCSD, but many, many different
techniques and models have been omitted. The classifica-
tion above is just one example of how these methods could
be organised. It is perhaps surprising that a real method has
not emerged from the computer-supported cooperative
work (CSCW) area. Issues of awareness and distribution of
control are particularly important here and some headway
is being made by, for example, Viller and Sommerville
(1999). Their method seeks to capture the results of
ethnographic studies in a form suitable for systems
designers. Distributed cognition as a fundamental approach
has also been omitted because real methods have not
appeared based upon it. The ideas are clearly crucial to our
understanding of HCSD and Green and Benyon (1996) do
show how representing the distribution of information in a
system can be useful.

We have seen that the various approaches described in
the previous section have arisen from a variety of
experiences and theories. Some are based on practical
experience. For example, the object concept is not derived
from any theory of human cognition or action: it was
originally a programming construct. The concept of a ‘task’,
on the other hand, is derived from information-processing
psychology and the concept of an activity has developed
from activity theory. Some of the concepts are well formed
(e.g. the entity construct in the data-centred methods or
the concept of a sign in semiotics) whereas others are much
more vague (e.g. context) and others include a range of
alternative conceptualisations (e.g. the scenario concept).
Some of the concepts used by the different approaches are
very similar (e.g. the system concept appears in systems
theory, activity theory and in cognitive engineering) and
others are closely related (e.g. the idea of task and the idea
of scenario). There are, in addition, similarities between
the underlying theories. For example, when the emphasis is

Representations in Human–Computer Systems Development 191

put on a cognitive system consisting of individuals and
artefacts then we would be talking about distributed
cognition, but when the emphasis is mainly put on a
group of people, working and communicating through
artefacts, we would be talking about activity theory.

Systems theory, activity theory and distributed cognition
take a holistic, systems view of the world. An activity is ‘a
system that has structure’. Similarly for distributed cogni-
tion it is the overall system (which includes many people
and many information artefacts) which has a goal; the goal
of this activity of flying a plane is the ‘successful completion
of a flight’ (Hutchins 1991). In terms of activity theory this
would be expressed as: the object (more or less equivalent to
the system’s purpose or goal) of the activity is the successful
completion of a flight. In systems theory we perceive and
define systems which have an ongoing purpose and a
coherent structure.

An important distinction may be made between
objectivist views of ‘the world’ and subjectivist views.
Whereas approaches emphasising activities in context are
openly subjectivist, the object paradigm takes a highly
objectivist view. Designers are encouraged to ‘discover’
objects, objects are related to objects in the real world, and
so on. In data-centred methods, on the other hand,
subjectivity has been emphasised more; an E-R model is a
subjective representation of a perceived situation (Lewis
1994). Semiotics is fundamentally concerned with inter-
pretation of signs and with the subjective nature of the
‘hermeneutic circle’ – signs can only be interpreted in terms
of the other signs, which in their turn were interpreted in
terms of other signs, and so on. Some of the approaches try
to avoid this distinction by developing rich, subjectivist
representations, and then embody these in concrete,
objectivist scenario or task descriptions. We have also
seen the distinction between concepts based on well-
formed theories (e.g. activity, entity, system, sign) and
others which are based on ‘spontaneous’ philosophies (e.g.
scenario, object, context). Table 1 provides a summary of
the main features of the different approaches that we have
considered.

There is inevitably a dilemma here for HCSD as our
purpose is to construct HCS. Hence we have to embody the
results of our analysis in concrete artefacts at some point.
For anthropology, for example, this is not a problem as the
purpose is to understand and describe, not to redesign. We
have seen the soft approaches to systems development
emphasising envisionment, participation and cooperation.
Others (e.g. Dowell and Long’s cognitive engineering) take
a harder approach in which concepts of usability and
learnability can be objectively defined and measured.

The complexity of HCSD requires us to employ a range
of models in order to gain the variety of insights that are
necessary if we are to design successful HCS. At different
points in the design process, different models will be more
or less useful for designers. The models and methods
reviewed in Section 3 may all have a place to play. For
example, OO methods are desirable in order to construct
systems using OO systems, but may have problems at the
analysis/design stage since they are not as rigorous as
entities in E-R modelling. Scenarios, tasks and use cases
seem appropriate for evaluating alternative designs and for
envisioning future interactions, but may be too welded to
current implementations to provide the level of abstraction
necessary for creative design to occur. Data-centred models
focus on the exchange of signals between the agents and
devices which constitute that system. Focusing on data or
signs is more abstract, more device independent and makes
the knowledge assumed by different agents and devices
explicit. We need to consider the social construction of
interaction and the use of language and thought in
situations and the physical characteristics.

4. CONCLUSION

Finding the most appropriate representations for develop-
ing HCS is essential for effective design, but remains
difficult while different conceptions of HCSD exist. In the
review presented here, we can see different traditions
emphasising aspects that are seen to be most important in

Table 1. Main features of approaches to HCSD

Concepts Structure/function/purpose Level of abstraction Physical form

Data-centred Entity, relationship, dataflow Structure and function Medium to low ER diagram, DFD

Task-based Task, plan, operation Purpose (goals) and function Medium to low Structure diagram, grammar

Object-oriented Object structure Medium, low Unified Modeling Language (UML)

Systems System, CATWOE elements Purpose, structure High Rich picture

Semiotics Sign Structure Low

Activities Activity, context Purpose (object), structure Medium–high Activity checklist, triangular
representation

Scenarios Scenario, use case Function High to low Storyboards, etc., use case diagrams

Cognitive
engineering

Cognitive work system,
means–end, domain

Purpose, structure High to medium Various diagrams (Rasmussen)

Constructional Input/processing, output Structure and function Low Many varieties

D. Benyon192

that particular area. Hence the tradition of task analysis
where people are mostly concerned with a person using a
computer. The ideas of activity and distributed cognition
have arisen from studying collaborative work and cognitive
engineering that has arisen from the development of
complex control systems. We will soon have to face up to
issues of designing for mobile devices, for intelligent
systems and for networks of embedded systems.

With the ubiquity of ‘information appliances’ (Norman
1999) or information artefacts (Benyon et al 1999), the
single-person single-computer view of HCSD becomes
inadequate, a point recently emphasised by Hollan et al
(2002). The ubiquity of computing means that we need to
design for people surrounded by information artefacts.
People are no longer simply interacting with a computer –
they are interacting with people using various combinations
of computers, information artefacts and media. As comput-
ing devices become increasingly pervasive, adaptive,
embedded in other systems and able to communicate
autonomously, the human moves from outside to inside an
information space. In the near future the standard graphical
user interface will disappear for many applications, the
desktop will disappear, the keyboard and mouse will
disappear. Information artefacts will be both embedded in
the physical environment and carried or worn by people as
they move through that environment.

This conceptualisation of HCSD is illustrated in Fig. 1.
The basic ontology consists of activities, people (or
artificial agents), information artefacts the domain. The
aim is to move away from the dualism of cognitive system
and domain and the focus on gulfs of execution and
evaluation between a person and a computer. The figure
tries to illustrate that these four things are intrinsically
intertwined and it is this interlinkage that supplies or
creates the context for action. People undertake activities
in an activity space, but they are constantly moving
between the activity space and the information space – the
conceptual side of the information artefact (consisting of
data,) being the information space and the perceptual side
(providing a view onto that conceptual structure) existing

in the activity space. There is also unlikely to be a simple
one-to-one relationship between any of the components.

The notion that we can see people as existing in, and
navigating through, an information space (or multiple
information spaces) has been suggested as an alternative
conceptualisation of HCSD (Benyon and Höök 1997).
Looking at HCSD in this way means looking at HCSD as
the creation of information spaces (Benyon 1998b).
Navigation of information space is not (just) a metaphor for
HCI. It is a ‘paradigm shift’ that changes the way that we
look at HCSD. The conception has influenced and been
influenced by new approaches to systems design (Munro et
al 1999), usability (McCall and Benyon 2002) and
information gathering (Macaulay et al 2000).

This change of view has many resonances with recent
work by Hollan and Hutchins on distributed cognition
(Hollan et al 2002) and with the ecological approach to
design. ‘Ecological interface design focuses on matching the
structure in the interface to the natural constraints of the
work domain in a way to inform and guide the operator as
he navigates within that work domain’ (Flach 1995, p. 10).
Importantly, the move is away from the idea that we can
maximise performance of some work system with respect to
some domain. It is on recognising that some area of activity
(something which some observer perceives as a system)
consists of people (or artificial agents), information
artefacts, activities and domain objects. It is this combina-
tion that is the unit of analysis and design, and it is the
combination we seek to design so that the combination, as
a whole, is effective in the pursuit of its purpose.

Navigation of information space is a new paradigm for
thinking about HCSD, just as direct manipulation was a
new paradigm in the 1980s. Shifting the paradigm changes
the way you think about things. Computers still compute
even though we have an OO paradigm instead of one based
on functional decomposition. It happens that people
believe that thinking about computing as an OO system
helps to develop better systems. The metaphor that
underlies a conception of HCI is crucial to the effectiveness
of a that view for particular purposes (Benyon and Imaz
1999). Navigation of information space suggests the view
that ‘people are navigators’ and encourages us to look to
approaches from physical geography, urban studies, garden-
ing and architecture in order to inspire designs. The
changing models in HCSD can be seen as changing
paradigms for understanding our discipline – or at least the
design issues that we face. We might expect the direct
manipulation, WIMP interface and task-based analysis and
design to be superseded by the ‘indirect management’,
delegated approach of agent-based interaction (Kay 1990).
The passive retrieval of information from systems will give
way to a more active involvement of people within their
‘information space’. Attention will shift from application-
based systems to domain-oriented environments (FischerFig. 1. Basic ontology of HCSD.

Representations in Human–Computer Systems Development 193

1989, 1998). In such a situation, our metaphors for systems
development must similarly shift. Benyon (1998) presents a
conception of cognitive engineering as the creation of
information spaces. Such a view encourages us to look to
the designers of physical, geographical spaces – architects,
city planners and the like – to help us understand our
discipline and looks to spatial cognition and theories of
navigation for a theoretical grounding (Spence 2000). In
the design of physical space we have seen a move away from
a utilitarian view of engineering towards a recognition of
the social, cultural and political environment which people
inhabit. Postmodernism has taught us that engineers
cannot dictate the nature of space. It is people who
produce spaces (Lefebvre 1983). Elsewhere (Benyon and
Höök 1997) we provide a variety of alternative metaphors
for thinking about information spaces – as a city, as an
ocean, as a wilderness and so on, each of which enables us
to concentrate of different aspects of user activities.

The analogy with HCSD is that design is concerned
with creating information spaces which consist of agents
and devices that represent things which are meaningful to
people. People engage in cognitive, personal and social
activities within these information spaces. Not only will
people influence the design of these spaces, but we can
expect a degree of autonomy as artefacts adapt to evolving
situations. The concepts and representations that we need
for designing such experiences may take us a long way from
where we are now.

References

Amodeus (1994). Online at http://www-lgi.imag.fr/Les.Groups/IHM/
AMODEUS.

Andersen PB (1990) A theory of computer semiotics. Cambridge
University Press, Cambridge, UK.

ASE (1998). Special issue: domain modeling for interactive system design.
Automated Software Engineering 385–464.

Avison D, Fitzgerald G (1996) Information systems development.
McGraw-Hill, New York.

Avison D, Wood-Harper T (1990) Multiview methodology. Alfred Waller
(McGraw-Hill), New York.

Bannon L (1991) From human factors to human actors. In Greenbaum J,
Kyng M. (eds). Design at work: cooperative design of computer systems.
Erlbaum, Hillsdale, NJ.

Barlow J, Rada R, Diaper D (1989). Interacting WITH computers.
Interacting with Computers 1(1):39–42.

Barnard P, May J (1999). Representing cognitive activity in complex tasks.
Human–Computer Interaction 14(1,2):93–158.

Bench-Capon TJM, McEnery AM (1989). People interact through
computers not with them. Interacting with Computers 1(1):31—38.

Benyon DR (1992). Task analysis and systems design: the discipline of
data. Interacting with Computers 4(2):246–259.

Benyon DR (1993). A functional model of interacting systems: a semiotic
approach. In Connolly JH, Edmonds EA (eds). CSCW and AI. Erlbaum,
London, pp 105–126.

Benyon DR (1995). A data-centred approach to user centred design. In
Nordby K, Helmersen PH, Gilmore DJ, Arnesen SA (eds). Human–
computer interaction: INTERACT-95. Chapman & Hall, London, pp
197–202.

Benyon DR (1996). Domain models for user interface design. In Benyon

DR, Palanque P (eds). Critical issues in user interface systems
engineering. Springer, Berlin, pp 3–19.

Benyon DR (1997). Information and data modeling. McGraw-Hill,
Wokingham, UK.

Benyon DR (1998). Cognitive ergonomics as navigation in information
space. Ergonomics 41(2):153–156.

Benyon DR, Höök K (1997). Navigation in information space: supporting
the individual. In Proceedings of INTERACT ’97. Chapman & Hall,
London, pp 39–46.

Benyon DR, Palanque P (eds) (1996). critical issues in user interface
systems engineering (CRUISE). Springer, Berlin

Benyon DR, Skidmore SR (1987). A tool-kit approach to information
systems development. Computer Journal 31(1):2–7.

Benyon DR, Kilgour A, Sandblad B (1997). Integrating HCI and software
engineering. In proceedings of INTERACT ’97. Chapman & Hall,
London, pp 691–692.

Benyon DR, Green TRG, Bental D (1999). Conceptual modelling for
human computer interaction, using ERMIA. Springer, London.

Bergman E (ed) (2000). Information appliances. Morgan Kaufmann, San
Francisco.

Beyer H, Holzblatt K (1998). Contextual design: designing customer-
centred systems. Morgan Kaufmann, San Francisco.

Bødker S (1990). Through the interface. Erlbaum, Hillsdale, NJ.

Booch G (1994). Object-oriented design with applications. Benjamin/
Cummings, Redwood City, CA.

Braudes RE (1991). Conceptual modeling: a look at system-level user
interface issues. In Karat J (ed). Taking software design seriously.
Academic Press, New York, pp 195–208.

Browne D (1994). Structured user design interaction: STUDIO
methodology. Prentice-Hall, Englewood Cliffs, NJ.

Card S, Moran TP, Newell A (1980). The psychology of human–computer
interaction. Erlbaum, Hillsdale, NJ.

Carroll JM (1990). Infinite detail and emulation in an ontologically
minimised HCI. In Chew JC, Whiteside J (eds). Empowering People:
CHI’90 Proceedings. ACM Press, New York.

Carroll JM (1995). The scenario perspective on system development. In
Carroll JM (ed). Scenario-based design: envisioning work and
technology in system development. Wiley, New York, pp 1–17.

Carroll JM, Mack RL (1985). Metaphor, computing systems and
interactive learning. International Journal of Man–Machine Studies
22:39–57.

Carroll JM, Rosson MB (1992). Getting round the task–artefact cycle: how
to make claims and design by scenario. ACM Transactions on
Information Systems 10:181–212.

Checkland PB (1981). Systems theory, systems practice. Wiley, New York.

Chen PP-s (1976). Towards a unified theory of data. ACM Transactions
on Database Systems 1(1):9–36.

Coad P, Yourdon E (1992). Object-oriented analysis (2nd edn). Prentice-
Hall, Englewood Cliffs, NJ.

Cockton G, Clarke S, Gray P, Johnson C (1996). Literate development:
weaving human context into design specifications. In Benyon DR,
Palanque P (eds). Critical issues in user interface systems engineering.
Springer, Berlin, pp 227–248.

Codd EF (1970). The relational model of data for large shared databanks.
Communications of the ACM 13(6):377–387.

Codd EF (1982). Relational database: a practical foundation for
productivity. Communications of the ACM 25(2):109–117.

Coutaz J, Nigay L, Salber D (1996). Agent-based agent modeling for
interactive systems. In Benyon DR, Palanque P (eds). Critical issues in
user interface systems engineering. Springer, Berlin, pp 191–210.

Davis AM (1993). Software requirements: objects, functions and states.
Prentice-Hall, Englewood Cliffs, NJ.

DeMarco T (1979). Structured analysis, systems specification. Yourdon
Press, Englewood Cliffs, NJ.

de Souza C (1993). The semiotic engineering of user interface languages.
International Journal of Man–Machine Studies 39:753–773.

Dennett D (1989). The intentional stance. MIT Press: Cambridge, MA.

D. Benyon194

Diaper D (ed) (1989). Task analysis for human–computer interaction. Ellis
Horwood, Chichester.

Diaper D, Addison M (1992). Task analysis and systems analysis for
software development. Interacting with Computers 4(1):124–139.

Dowell J, Long J (1989). Towards a conception for an engineering
discipline of human factors. Ergonomics 32(11):1513–1535.

Dowell J, Long J (1998). Conception of the cognitive engineering
problem. Ergonomics 41(2):126–139.

Draper S (1993). The notion of task in HCI. In Ashlund S, Mullet K,
Hendersen A, Hollnagel E, White T (eds). Proceedings of InterCHI’93:
adjunct proceedings. ACM Press, New York.

Eco U (1976). A Theory of semiotics. Indiana University Press,
Bloomington, IN.

Eco U (1984). Semiotics and the philosophy of language. Indiana
University Press, Bloomington, IN.

Engström Y, Escalante V (1996). Mundane tool or object of affection? The
rise and fall of the postal buddy. In Nardi B (ed). Context and
consciousness: activity theory and human–computer interaction. MIT
Press, Cambridge, MA, pp 325–374.

Ergonomics (1998). 41(2) 126–178.

Fischer G (1989). Human–computer interaction software: lessons learned,
challenges ahead. IEEE Software (January):44–52.

Flach J (ed) (1995). Global perspectives on the ecology of human–
machine systems. Erlbaum, Hillsdale, NJ.

Gibson JJ (1979). The ecological approach to visual perception.
Houghton-Mifflin, Boston, MA.

Goel V, Piroli P (1992). The structure of design problem spaces. Cognitive
Science 16:395–429.

Gray W, John B, Stuart R, Lawrence D, Atwood MA (1990). GOMS
meets the phone company: analytic modeling applied to real-world
problems. In Diaper D et al (eds). Human–computer interaction:
INTERACT’90. Elsevier Science, Amsterdam.

Green TRG (1995). Looking through HCI. In Kirby M, Dix A, Finlay J
(eds). People and computers X. Cambridge University Press, Cambridge,
UK, pp 21–36.

Green TRG (1998). The conception of a conception. Ergonomics
41(2):143–146.

Green TRG, Benyon DR (1996). The skull beneath the skin: entity-
relationship modeling of information artefacts. International Journal of
Human Computer Studies 44(6):801–828.

Greenbaum J, Kyng M (eds) (1991). Design at work: cooperative design of
computer systems. Erlbaum, Hillsdale, NJ.

Guarino N, Poli R (eds) (1995). Special issue: the role of formal ontology
in the information technology. International Journal of Human
Computer Studies 43(5/6):623–965.

Hix D, Hartson HR (1993). Developing user interfaces. Wiley, New York.

Hollan J, Hutchins E, Kirsh D (2000). Distributed cognition: toward a new
foundation for human-computer interaction research.

Hollnagel E (1997). Building joint cognitive systems: a case of horses for
courses? In Smith MJ, Salvendy G, Koubek R (eds). Design of
computing systems: social and ergonomic considerations. Elsevier
Science, Amsterdam, pp 39–42.

Hollnagel E, Woods DD (1983). Cognitive systems engineering: new wine
in new bottles. International Journal of Man Machine Studies 18:583–
600.

Hutchins E (1991). How a cockpit remembers its speeds. Manuscript.
Department of Cognitive Science, University of California, La Jolla,
CA. Cited in Nardi (1996).

Hutchins E (1995). Cognition in the wild. MIT Press, Cambridge, CA.

IJHCS (1997). Special issue: using explicit ontologies in knowledge-based
systems development. International Journal of Human Computer
Studies 46(2/3):181–408.

Imaz M, Benyon DR (1999). How stories capture interactions.

Jacobson I (1995). The use case construct in object-oriented software
engineering. In Carroll JM (ed). Scenario-based design: envisioning
work and technology in system development. Wiley, New York, pp 309–
336.

Jacobson I, Chistensen, M, Johnson P, Overgaard G (1993). Object-
oriented software engineering. Addison-Wesley, Reading, MA.

Johnson P, Johnson H, Wilson S (1995). Rapid prototyping of user
interfaces driven by task models. In Carroll JM (ed.). Scenario-based
design: envisioning work and technology in system development. Wiley,
New York, pp 209–246.

Jones CC (1981). Design methods: seeds of human futures (2nd edn).
McGraw-Hill, London.

Kangassalo H (1983). Structuring principles of conceptual schemas and
conceptual models. In Bubenko J (ed). Information modeling.
Chartwell-Bratt, pp 223–307.

Kao D, Archer NP (1997). Abstraction in conceptual model design.
International Journal of Human–Computer Studies 46:125–150.

Kaptelinin V (1996). Activity theory: implications for human–computer
interaction. In Nardi B (ed). Context and consciousness: activity theory
and human–computer interaction. MIT Press, Cambridge, MA, pp 103–
116.

Kaptelinin V, Nardi B, Macaulay C (1999). The activity checklist: a tool
for representing the space of context. Interactions 6(4):27–39.

Karat J (1991). Taking software design seriously. Academic Press, New
York.

Kay A (1990). A personal view. In Laurel B (ed). The art of human–
computer interface design. Addison-Wesley, Reading, MA, pp 191–208

Kieras D, Polson PG (1985). An approach to the formal analysis of user
complexity. International Journal of Man Machine Studies 22:365–394.

Kyng M, Mathiassen L (eds) (1997). Computers and design in context.
MIT Press, London.

Lakoff G (1987). Women, fire and dangerous things: what categories reveal
about the mind. Chicago University Press, Chicago, IL.

Lakoff G, Johnson M (1999). Philosophy in the flesh: the embodied mind
and its challenge to western thought. Basic Books, New York.

Langefors B (1966). Theoretical analysis of information systems.
Studentliteratur, Lund, Sweden.

Laszlo P (1969). System, structure and experience. Gordon & Breach,
London, 1969.

Lefebvre H (1991). The production of space. Blackwell, Oxford.

Leont’ev AN (1978). Activity, consciousness and personality. Prentice-
Hall, Englewood Cliffs, NJ.

Lewis P (1994). Information systems development. Pitman, London.

Lim, Long J (1994). The MUSE method for usability engineering.
Cambridge University Press, Cambridge, UK.

Long J, Dowell J (1988). Cognitive engineering. Ergonomics 41(2):174–
178.

Maclean A, Young RM, Belotti VME, Moran TP (1991). Questions,
options and criteria: elements of design space analysis. Human–
Computer Interaction 6:201–250.

Macaulay C, Benyon DR and Crerar A (2000). Etinography, theory and
systems design: from institution to insight. International Journal of
Human Computer Studies 53(1):35–60.

McCall R and Benyon DR (2002). Navigation: within and beyond the
metaphor in interface design and evaluation, in Höök K, Benyon DR
and Munro A (eds) Designing Information Spaces: The Social
Navigation Approach. Springer-Verlag, London (in press).

Moran T (1981). Command language grammar: a representation for the
user interface of interactive computer systems. International Journal of
Man Machine Studies 15:3.

Nardi B (ed) (1996). Context and consciousness: activity theory and
human–computer interaction. MIT Press: Cambridge, MA.

Nardi B (1997). HCI 97 keynote address. In BCS HCI’97 conference,
Bristol, UK.

Norman D (1999). The invisible computer. Bradford Books.

Norman D, Draper S (1986). User-centred systems design. Erlbaum,
Hillsdale, NJ.

Olle TW, Sol HG, Tully CJ (eds) (1983). Proceedings of IFIP WG8.1
working conference: comparative review of information systems design
methodologies: a feature analysis. North-Holland, Amsterdam.

Olle TW, Sol HG, Verrijn-Stuart AA (eds) (1982). Proceedings of IFIP

Representations in Human–Computer Systems Development 195

WG8.1 working conference: comparative review of information systems
design methodologies: a feature analysis. North-Holland, Amsterdam.

O’Neill E, Johnson P, Johnson H (1999). Representations and user-
developer interaction in cooperative analysis and design. Human–
Computer Interaction 14(1,2):43–92.

OVID (1997). Roberts D, Berry D, Isensee S (1997). Object view and
interaction design. Tutorial notes, INTERACT’97.

Palanque P, Bastide R (1996). Task-models – system models: a formal
bridge over the gap. In Benyon DR, Palanque P (1996). Critical issues in
user interface systems engineering. Springer, Berlin, pp 65–80.

Parsons J, Wand Y (1997). Choosing classes in conceptual modeling.
Communications of the ACM 40(6):63–69.

Payne SJ, Green TRG (1989). Task-action grammar: the model and its
developments. In Diaper D (ed). Task analysis for human–computer
interaction. Ellis Horwood, Chichester, pp 75–107.

Preece JJ, Rogers YR, Sharp H, Benyon DR, Holland S, Carey T (1994).
Human–computer interaction. Addison-Wesley, Reading, MA.

Pylyshyn ZW (1984). Computation and cognition. MIT Press, Cambridge,
MA.

Rasmussen J (1986). Information processing and human–machine
interaction: an approach to cognitive engineering. Elsevier Science,
New York.

Rasmussen J (1987). Cognitive engineering. In Bullinger H-J, Shackel B
(eds). Human–computer interaction – INTERACT’87. North-Holland,
Amsterdam, pp xxv–xxx.

Rasmussen J, Pejtersen A-M (1995). Virtual ecology of work. In Flach J
(ed). Global perspectives on the ecology of human-machine systems.
Erlbaum, Hillsdale, NJ, pp 121–156.

Redmond-Pyle D, Moore A (1995). Graphical user interface design and
evaluation. Prentice-Hall, London.

Rosenquist CJ (1982). Entity-life cycle models and their applicability to
information systems development life cycles. Computer Journal
25(3):307–315.

Rosson MB, Alpert SR (1990). The cognitive consequences of object-
oriented design. Human Computer Interaction 5:345–379.

Rosson MB, Carroll JM (1995). Narrowing the specification–implementa-
tion gap in scenario-based design. In Carroll JM (ed). Scenario-based
design: envisioning work and technology in system development. Wiley,
New York, pp 247–278.

Rumbaugh J, Blaha M, Premerelani W, Eddy F, Lorensen W (1991).
Object-oriented modeling and design. Prentice-Hall, Englewood Cliffs,
NJ.

Schön DA (1983). The reflective practitioner: how professionals think in
action. Basic Books, New York.

Shlaer S, Mellor SJ (1992). Object life cycles. Prentice-Hall, Englewood
Cliffs, NJ.

Simon H (1981). The sciences of the artificial. MIT Press, Cambridge,
MA.

Sloane A, van Rijn F (2000). Home informatics and telematics. Kluwer,
Dordrecht.

Spence R (2000). A framework for navigation. International Journal of
Human–Computer Studies 51:919–945.

Stamper R. (1977). Information. Batsford, London.

Storrs G (1989). Towards a theory of HCI. Behaviour and Information
Technology 8(5):323–334.

Sturrock J (1986). Structuralism. Collins, London.

Suchman L (1987). Plans and situated actions: the problem of human–
machine communication. Cambridge University Press, Cambridge, UK.

Suchman L (1995). Making work visible. Communications of the ACM
38(9):56–64.

Sully P (1994). Modeling the world with objects. Prentice-Hall,
Englewood Cliffs, NJ.

Sundgren B (1975). The theory of database. Mason/Charter.

Sutcliffe A, Maiden N (1998). The domain theory for requirements
engineering. IEEE Transactions on Software Engineering 24(3):174–
196.

Sutcliffe A, Benyon DR, van Assche F (eds) (1996). Domain knowledge
for interactive system design. Chapman & Hall, London.

Tweedie L (1995). Interactive visualisation artefacts: how abstractions
inform design. In Kirby M, Dix A, Finlay J (eds). People and Computers
X. Cambridge University Press, Cambridge, UK, pp 247–266.

Vicente K (1998). An evolutionary perspective on the growth of cognitive
engineering: the Riso genotype. Ergonomics 41(2):156–159.

Vicente K (1999). Cognitive work analysis: toward safe, productive and
healthy computer-based work. Erlbaum, Mahwah, NJ.

Vicente K, Rasmussen J (1992). Ecological interface design: theoretical
foundations. IEEE Transactions on Systems, Man and Cybernetics
22(4):589–606.

Viller S, Sommerville I (1999). Coherence: an approach to representing
ethnographic analyses in systems design. Human–Computer Interaction
14(1,2):9–40.

Winograd T, Flores F (1986). Understanding computers and cognition: a
new foundation for design. Ablex, Norwood, NJ.

Wirfs-Brock R, Wilkerson B, Weiner L (1990). Designing object oriented
software. Prentice-Hall, Englewood Cliffs, NJ.

Wittgenstein L (1953). Philosophical Investigations (3rd ed.) Trans.
GEM, Anscombe, OUP.

Wood D (1992). The power of maps. Routledge, London.

Correspondence and offprint requests to: D. Benyon, School of Computing,
10 Colinton Road, Edinburgh EH10 1LD, UK. Email: d.benyon@dcs.na-
pier.ac.uk

D. Benyon196

