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Abstract

Our note1 is dedicated to the Palm/Erlang-A Queue. This is the simplest practice-
worthy queueing model, that accounts for customers’ impatience while waiting. The model
is gaining importance in support of the staffing of call centers, which is a central step in their
Service-Engineering. We discuss computations of performance measures, both theoretical
and software-based (via the 4CallCenter software). Then several examples of Palm/Erlang-
A applications are presented, mostly motivated by and based on real call center data.
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1 Introduction

Service Engineering is a newly emerging discipline that seeks to develop scientifically-based

engineering principles and tools, often culminating in software, which support the design and

management of service operations. Contact Centers are service organizations for customers

who seek service via the phone, fax, e-mail, chat or other tele-communication channels. A

particularly important type of contact centers are the Call Centers, which predominantly serve

phone calls. Due to advances in Information and Communication Technology, the number, size

and scope of contact centers, as well as the number of people who are employed there or use

them as customers, grows explosively. For example, in the U.S. alone, the call center industry is

estimated to employ several million agents which, in fact, outnumbers agriculture. In Europe,

the number of call center employees in 1999-2000 was estimated, for example, by 600,000 in the

UK (2.3% of the total workforce) and 200,000 in Holland (almost 3%) [3]. Bittner et al. [5]

assess that, in Germany in 2001, there were between 300,000 to 400,000 (1-2%) employed in the

call center industry.

Figure 1: Schematic representation of a telephone call center
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In a large performance-leader call center, many hundreds of agents could serve many thou-

sands of calling customers per hour; agents’ utilization levels exceed 90%, yet about 50% of

the customers are answered immediately upon calling; callers who are delayed demand a re-

sponse within seconds, the vast majority gets it, and scarcely few of the rest, say 1% of those

calling, abandon during peak-congestion due to impatience. But most call centers are far from

achieving such levels of performance. To these, scientific models are prerequisites for climb-

ing the performance ladder, and the model described in this paper, namely Palm/Erlang-A,
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should constitute their starting point. See Gans, Koole and Mandelbaum [13] or Helber and

Stolletz [18] for reviews of state-of-the-art of research on telephone call centers. In addition,

Mandelbaum [20] provides a comprehensive bibliography, namely references plus abstracts, of

call-center-related research papers.

Modelling a Call Center. A simplified representation of traffic flows in a call center is given

in Figure 1. Incoming calls form a single queue, waiting for service from one of n statistically

identical agents. There are k + n telephone trunk-lines. These are connected to an Automatic

Call Distributor (ACD) which manages the queue, connects customers to available agents, and

also archives operational data. Customers arriving when all lines are occupied encounter a busy

signal. Such customers might try again later (“retrial”) or give up (“lost call”). Customers who

succeed in getting through at a time when all agents are busy (that is, when there are at least

n but fewer than k + n customers within the call center), are placed in the queue. If waiting

customers run out of patience before their service begins, they hang up (“abandon”). After

abandoning, customers might try calling again later while others are lost. After service, there

are “positive” returns of satisfied customers, or “negative” returns due to complaints.

Note that the model in Figure 1 ignores multiple service types and skilled-based routing that

are present in many modern call centers. However, a lot of interesting questions still remain

open (see Section 9) even for models with homogeneous servers/customers.

In basic models, the already simple representation in Figure 1 is simplified even further.

Specifically, in the present paper we assume that there are enough trunk-lines to avoid busy

signals (k = ∞). This assumption prevails in today’s call centers. In addition, we assume out

retrials and return calls, which corresponds to absorbing them within the arrivals. (See, for

example, Aguir et al. [2] for an analysis that takes retrials into account.) However, and unlike

most models used in practice, here we do acknowledge and accommodate abandonment. The

reasons for this will become clear momentarily.

2 Significance of abandonment in modelling and practice

The classical M/M/n queueing model, also called the Erlang-C model, is the one most fre-

quently used in workforce management of call centers. Erlang-C assumes Poisson arrivals at

a constant rate λ, exponentially distributed service times with a rate µ, and n independent

statistically-identical agents. (Time-varying arrival rates are accommodated via piecewise con-

stant approximations.) But Erlang-C does not allow abandonment. This, as will now be argued,

is a significant deficiency: customer abandonment is not a minor, let alone a negligible, aspect

of call center operations. We now support this last statement, first qualitatively and then quan-

titatively.
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• Abandonment statistics constitute the only ACD measurement that is customer-subjective:

those who abandon declare that the service offered is not worth its wait. (Other ACD

data, such as average waiting times, are “objective”; they also do not include the only

other customer-subjective operational measures, namely retrial/return statistics.)

• Some call centers focus on the average waits of only those who get served, which does

not acknowledge abandoning customers. But under such circumstances, the service-order

that optimizes performance is LIFO = Last-In-First-Out [14], which clearly suggests that

a distorted focus has been chosen.

• Ignoring abandonment can cause either under- or over-staffing: On the one hand, if service

level is measured only for those customers who reach service, the result is unjustly opti-

mistic - the effect of an abandonment is less delay for those further back in line, as well as

for future arrivals. This would lead to under-staffing. On the other hand, using workforce

management tools that ignore abandonment would result in over-staffing as actually fewer

agents are needed in order to meet most abandonment-ignorant service goals.

The Palm/Erlang-A model: Palm [26] introduced a simple (tractable) way to model aban-

donment. He suggested to enrich Erlang-C (M/M/n) in the following manner. Associated with

each arriving caller there is an exponentially distributed patience time with mean θ−1. An arriv-

ing customer encounters an offered waiting time, which is defined as the time that this customer

would have to wait given that her or his patience is infinite. If the offered wait exceeds the

customer’s patience time, the call is then abandoned, otherwise the customer awaits service.

The patience parameter θ will be referred to as the individual abandonment rate. (We shall

omit “individual”, when obvious.) We denote this model by M/M/n+M, and refer to it as

Palm/Erlang-A, or Erlang-A for short. Here the A stands for Abandonment, as well as for the

fact that the model interpolates between Erlang-C and Erlang-B. (The latter is the M/M/n/n

model, in which there are n trunk lines (k=0), hence customers that cannot be served immedi-

ately are blocked.)

With Erlang-A, the quantitative significance of abandonment can be demonstrated through

simple numerical examples. We start with Figure 2, which shows the fraction of delayed cus-

tomers and the average wait, when calculated via Erlang-C (M/M/n), and a corresponding

Erlang-A (M/M/n+M) model. In both models, the arrival rate is 48 calls per minutes, the

average service time equals 1 minute, and the number of agents is varied from 35 to 70. Average

patience is taken to be 2 minutes for the Erlang-A model. Clearly, the two curves convey rather

different pictures of what is happening in the system they depict, especially within the range

of 40 to 50 agents: in particular, and as shown below, Erlang-C is stable only with 49 or more

agents, while Erlang-A is always stable.

3



The above M/M/n and M/M/n+M models are further compared in Table 1. Note that

exponential patience with an average of 2 minutes gives rise to 3.1% abandonment. Then note

that the average wait and queue length are both strikingly shorter with only 3.1% abandonment

taking place. Indeed, “The fittest survive” and wait less - much less. (Significantly, this high-

level performance is not achieved if the arrival rate to the M/M/n system is decreased by 3.1%;

for example, the “average speed of answer” in such a case is 8.8 seconds, compared with 3.7

seconds. The reason is that abandonment reduce workload precisely when needed, namely when

congestion is high.) Finally, note that system performance in such heavy traffic is very sensitive

to staffing levels. In our example, adding 3 or 4 agents (from 50 to say 54) to M/M/n would

result in M/M/n+M performance, as emerging from the horizontal distance between the graphs

in Figure 2. Nonetheless, since personnel costs are the major operational costs of running

call centers (prevalent estimates run at about 60-75% of the total), even a 6%-8% reduction

in personnel is economically significant (and much more so for large call centers that employ

thousands of agents).

Figure 2: Comparison between Erlang-A and Erlang-C [15, 34]
48 calls per min., 1 min. average service time, 2 min. average patience
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As a final demonstration of the significance of abandonment, we now use it to explain a

phenomenon that has puzzled queueing theorists: It is the observation that, in practice, simple

deterministic approaches often lead to surprisingly good results. For example, consider a call

center with averages of 6000 calls per hour and service time of 4 minutes. Such a call center gets

an average of (6000 : 60) ·4 = 400 minutes of work per minute. The deterministic approach then

prescribes 400 service agents to cope with this load (1 agent-minute per 1 work-minute), which is

a questionable recommendation according to standard queueing models. For example, Erlang-C
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Table 1: Comparing models with/without abandonment
50 agents, 48 calls per min., 1 min. average service time, 2 min. average patience

M/M/n M/M/n+M M/M/n, λ ↓ 3.1%
Fraction abandoning – 3.1% -
Average waiting time 20.8 sec 3.7 sec 8.8 sec

Waiting time’s 90-th percentile 58.1 sec 12.5 sec 28.2 sec
Average queue length 17 3 7

Agents’ utilization 96% 93% 93%

would then be unstable, and its waiting times and queue-lengths would increase indefinitely. But

now assume that customers abandon, as they actually do, and assign a reasonable parameter

to their average patience, say equal to the average service time. Then, under Erlang-A, about

50% of the customers would be answered immediately upon calling, the average wait would be a

mere 5 seconds, agents’ utilization would be 98%, and all this at the cost of 2% abandonment –

a remarkable performance indeed. (See the Remark in Section 6 for a more formal explanation.)

3 Birth-and-death process representation

Figure 3 provides a representation of the traffic flows in Erlang-A, and a comparison with Figure

1 clearly reveals its limitations. (Nevertheless, and as we hope to demonstrate, Erlang-A still

turns out very useful and insightful, both theoretically and practically.)

Figure 3: Schematic representation of the Erlang-A model
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Erlang-A is characterized by 4 parameters: λ, µ, θ and n. Here λ is the calling rate (calls

per unit of time); µ is the service rate (1/µ is the average duration of service); 1/θ is the average

patience of a customer; and n is the number of servers/agents. More formally, in the Erlang-A

model customers arrive to the queueing system according to a Poisson(λ) process. Customers are
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equipped with patience times τ that are exp(θ), i.i.d. across customers. And service times are

i.i.d. exp(µ). Finally, the processes of arrivals, patience and service are mutually independent.

For a given customer, the patience time τ is the time that the customer is willing to wait

for service - a wait that reaches τ results in an abandonment. Let V denote the offered waiting

time - the time a customer, equipped with infinite patience, must wait in order to get service.

The actual waiting/queueing time then equals

W = min{V, τ} .

Denote by L(t) the number-in-system at time t (includes both customers being served and

waiting in the queue). Then L = {L(t), t ≥ 0} is a Markov birth-and-death process, with the

following transition-rate diagram:

Figure 4: Transition-rate diagram of the Erlang-A model

An analysis of a birth-and-death process usually starts with verifying that it reaches steady-

state (it always does, in our case), and it then continues with calculation of its limiting/steady-

state distribution, defined by:

πj
∆= lim

t→∞
P{L(t) = j} , j = 0, 1, 2, . . . (3.1)

Alternatively, πj can be characterized as the fraction of time that the system spends in state j,

when in steady-state. Formulae for the steady-state distribution of Erlang-A are presented in

the Appendix.

4 Operational measures of performance

In order to understand and apply the Erlang-A model, one must first define its measures of

performance, and then be able to calculate them. Moreover, since a call center can get very

large (thousands of agents), the implementation of these calculations must be both fast and

numerically stable.

4.1 Practical measures: accounting for Abandonment

The most popular measure of operational (positive) performance is the fraction of served cus-

tomers that have been waiting less than some given time, or formally P{W ≤ T, Sr}, where W
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is the (random) waiting time in steady-state, {Sr} is the event “customer gets service” and T

is a target time that is determined by Management/Marketing. However, as explained before,

performance measures must take into account those customers who abandon. Indeed, if forced

into choosing a single number as a proxy for operational performance, we recommend the prob-

ability to abandon P{Ab}, the fraction of customers who explicitly declare that the service

offered is not worth its wait. Some managers actually opt for a refinement that excludes those

who abandon within a very short time, formally P{W > ε; Ab}, for some small ε > 0, e.g. ε = 3

seconds. The justification is that those who abandon within 3 seconds can not be characterized

as poorly served. There is also a practical rational that arises from physical limitations, specif-

ically that such “immediate” abandonment could in fact be a malfunction or an inaccuracy of

the measurement devices.

The single abandonment measure P{Ab} can be in fact refined to account explicitly for

those customers who were or were not well-served. To this end, we propose the following four-

dimensional service measure, given 2 parameters T and ε:

• P{W ≤ T ; Sr} - fraction of well-served;

• P{W > T ; Sr} - fraction of served, with a potential for improvement;

• P{W > ε; Ab} - fraction of poorly-served;

• P{W ≤ ε; Ab} - fraction of those whose service-level is undetermined - see the above for

an elaboration.

Our proposed 4-component measure is not commonly used and most workforce management

software tools are incapable of calculating it. To have it practical, we now describe how it can

be implemented via the software tool 4CallCenters [12].

4.2 Calculations: the 4CallCenters software

Black-box Erlang-A calculations, as well as many other useful features, are provided by the free-

to-use software 4CallCenters [12]. (This software is being regularly upgraded.) The calculation

methods are described in Appendix B of [15]; they were developed in the Technion’s M.Sc. thesis

of the first author, Ofer Garnett.

Figure 5 displays a 4CallCenters output and demonstrates how to calculate the four-dimensional

service measure, introduced in Subsection 4.1.

The values of the four Erlang-A parameters are displayed in the middle of the upper half of

the screen. Let T = 30 seconds and ε = 10 seconds. Then one should perform computations

twice: with Target Time 30 and 10 seconds. (Both computations appear in Figure 5.) We get:

• P{W ≤ T ; Sr} - fraction of well-served is equal to 71.1%;
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• P{W > T ; Sr} - fraction of served, with a potential for improvement, is 16.4% (87.5% −
71.1%);

• P{W > ε; Ab} - fraction of poorly-served is 8.6% (12.5%− 3.9%);

• P{W ≤ ε; Ab} - fraction of those whose service-level is undetermined is 3.9%.

Note that the 4CallCenters output includes many more performance measures than those dis-

played in Figure 5: one could scroll the screen to values of agents’ occupancy, average waiting

time, average queue length, etc.

In Section 8 we describe several examples of the more advanced capabilities of 4CallCenters.

Figure 5: 4Callcenters. Example of output.

 

4.3 A general approach for computing operational performance measures

Some explicit expressions of Erlang-A performance measures are provided in the Appendix. (See

also Riordan [27].) However, we recommend to use more general M/M/n+G formulae, as the

main alternative to 4CallCenters software. Indeed, Erlang-A is a special case of the M/M/n+G

queue, in which patience times are generally distributed. A comprehensive list of M/M/n+G

8



formulae, as well as guidance for their application, appears in Mandelbaum and Zeltyn [24].

The preparation of [24] was triggered by a request from a large U.S. bank. Consequently, this

bank has been routinely applying Erlang-A in the workforce management of its 10,000 telephone

agents, who handle close to 150 millions calls yearly.

The handout [24] also explains how to adapt the M/M/n+G formulae to Erlang-A, in which

patience is exponentially distributed. Specifically, see Sections 1,2 and 5 of [24].

4.4 Relation between average wait and the fraction abandoning

A remarkable property of Erlang-A, which in fact generalizes to other models with patience that

is exp(θ), is the following linear relation between the fraction abandoning P{Ab} and average

wait E[W ]:

P{Ab} = θ · E[W ] . (4.1)

Proof: The proof is based on the balance equation

θ · E[Q] = λ · P{Ab} , (4.2)

and on Little’s formula

E[Q] = λ · E[W ] , (4.3)

where Q is the steady-state queue length. The balance equation (4.2) is a steady-state equality

between the rate that customers abandon the queue (left hand side) and the rate that abandoning

customers (i.e. - customers who eventually abandon) enter the system. Substituting Little’s

formula (4.3) into (4.2) yields formula (4.1).

Figure 6: Probability to abandon vs. average waiting time [8]
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Figure 6 illustrates the relation (4.1). It was plotted using yearly data of an Israeli bank

call center [9], which is analyzed in a Service Engineering course that is taught at the Technion

[28, 9]. (See also Brown et al. [8] for statistical analysis of this call center data.) First, P{Ab}
and E[W ] were computed for the 4158 hour intervals that constitute the year 1999. The left

plot of Figure 6 presents the resulting “cloud” of points, as they scatter on the plane. For the

right plot, we are using an aggregation procedure that is designed to emphasize dominating

patterns. Specifically, the 4158 intervals were ordered according to their average waiting times,

and adjacent groups of 40 points were aggregated (further averaged): this forms the 104 points

of the second plot in Figure 6. (The last point of the aggregated plot is an average of only 38

hour intervals.)

We observe a convincing linear relation (line) between P{Ab} and E[W ]. Based on (4.1)

and Figure 6, the slope of this line is an estimate of the average patience, which here equals

446 seconds. In Brown et al. [8] and Mandelbaum et al. [19] it is shown that some M/M/n+M

assumptions do not prevail for the data [9]. Although arrivals are essentially Poisson, the service

times are not exponential (in fact, they are very close to being lognormal). Patience times were

shown to be non-exponential either. Yet, Erlang-A is proved useful for the performance analysis,

which we demonstrate further in Section 7.

It is therefore important to understand the circumstances under which one can practically

use simple relations that, theoretically, apply perhaps only to models with exponential patience.

A recent paper of Mandelbaum and Zeltyn [22] addresses this question for (4.1), demonstrating

that the linear relation is practically rather robust. See also [23] where we demonstrate a similar

linear relation on another data set.

5 Parameter estimation in a call center environment

In order to apply Erlang-A, it is necessary to input values for its four parameters: λ, µ, θ and n.

Typical applications use estimates, which are based on historical ACD data, and here we briefly

outline procedures for their estimation/prediction. For a more detailed exposition, including

some subtleties that occur in practice, readers are referred to [8].

Arrivals: Arrivals of incoming calls are typically assumed Poisson, with time-varying arrival

rates. The goal is to estimate/predict these arrival rates, over short time-intervals (15, 30

minutes or one hour), chosen so that the rates are approximately constant during an interval.

Then the time-homogeneous model is applied separately over each such interval.

The goal can be achieved in two stages. First, time-series algorithms are used to predict

daily volumes, taking into account trends and special days (eg. holidays, “Mondays”, special

sales). Second, one uses (non)parametric regression techniques for predicting the fraction of

arrivals per time-interval, out of the daily-total. This fraction, combined with the daily total,
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yields actual arrival rates per each time-interval. (See Section 4 in [8] for a detailed treatment.)

Services: Service durations are assumed exponential. Average service times tend to be rela-

tively stable from day to day and from hour to hour. (However, they often change depending

on the time-of-day! See [8].)

In practice, service consists of several phases, mainly talk time, wrap-up time (after-call

work), and what is sometimes referred to as auxiliary time. An easier-to-grasp notion is thus

“idle-time”, namely the time that an agent is immediately accessible for service. It is thus also

possible to estimate the average service time during a time interval by:

Total Working Time− Total Idle Time
Number of Served Customers

,

where Total Working Time is the product of the Number of Agents by the Interval Duration.

(See Adler et al. [1] for an application of this approach, in the context of product development.)

Number of agents: In performance analysis, the number of agents n is an Erlang-A input.

In staffing decisions, n is typically an output. In both cases, n is in fact the needed number of

FTE’s (Full Time Equivalent positions), and hence it must be normalized by the rostered staff

factor (RSF), or shrinkage factor, which accounts for absenteeism, unscheduled breaks etc. (See

Cleveland and Mayben [10]) . For example, if 100 agents are required for answering calls, in fact

more agents (105, 110, . . .) should be assigned to shift, depending on RSF.

Patience: (Im)patience time is assumed exponential, say exp(θ). One must then estimate the

individual abandonment rate θ, or equivalently, the average patience (1/θ). A difficulty arises

from the fact that direct observations are censored - indeed, one can only measure the patience

of customers who abandon the system before their service began. For the customers receiving

service, their waiting time in queue is only a lower bound for their patience. There are statistical

methods for “un-censoring” data; see [8]. Another, more basic problem for estimating θ, is that

most ACD data contain only averages, as opposed to call-by-call statistics that are required by

the available “uncensoring” methods. To this end, we suggest here two methods for estimating

average patience. The first is based on the relation (4.1) between the probability to abandon

and average wait. The average wait in queue, E[W ], and the fraction of customers abandoning,

P{Ab}, are in fact standard ACD data outputs, thus, providing the means for estimating θ as

follows:

θ̂ =
P{Ab}
E[W ]

=
%Abandonment
Average Wait

.

A second more general approach is to calculate some performance measure (see Section 4)

and compare the result to the value derived from ACD data. (This approach is applied in

[8].) The goal is to calibrate the patience parameter until these estimates closely match. One

advantage of this method is the flexibility in choosing the performance measure being matched,
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which might depend on the given ACD data. Furthermore, this calibration represents a form of

validation of the model’s assumptions, and can compensate for discrepancies.

6 Approximations

Although exact formulae for the Erlang-A system are available and can be incorporated in

software (see Sections 3 and 4), they are too complicated for providing guidelines and insights to

call center researchers and managers. Consequently, some useful and insightful approximations

have been developed, which we now describe.

It has been found useful to distinguish three operational regimes, as in Garnett et al. [15]

and Zeltyn and Mandelbaum [23]. Each regime represents a different philosophy for operating

a call center. One regime is Efficiency-Driven (ED), another is service Quality-Driven (QD),

and the third one rationalizes efficiency and quality, namely it is Quality and Efficiency-Driven

(QED).

We are interested mainly in not-too-small call centers. Hence, we think of the service and

abandonment rates, µ and θ, as fixed, and the arrival rate λ is large enough (formally, it increases

indefinitely).

Actually, the regimes are determined by the offered load parameter R, which is defined as

R =
λ

µ
; R represents the amount of work, measured in time-units of service, that arrives to the

system per unit of time. (R = λ · 1
µ

is thus a more telling representation.) R is also the staffing

level n that would be prescribed by the deterministic approach (see the end of Section 2), which

ignores stochastic variability. An emphasis of efficiency (service quality) would conceivably lead

to n < R (n > R); the deviation of n from R then increases with the intensity of the emphasis.

We now proceed with a formal description of the three operational regimes.

QED (Quality and Efficiency-Driven) regime.

n ≈ R + β
√

R , −∞ < β < ∞ ; (6.1)

β is a service-grade parameter – the larger it is, the better is the service-level. The staffing

regime, described by (6.1), is governed by the so-called Square Root Rule. This rule was already

described by Erlang [11], as early as 1924. He reported that it had been in use at the Copenhagen

Telephone Company since 1913. A formal QED analysis for the Erlang-C queue appeared only

in 1981, in the seminal paper of Halfin and Whitt [16]. (The service grade β must be positive in

this case.) Garnett et al. [15] explored Erlang-A in the QED regime and Zeltyn and Mandelbaum

[23] treated the M/M/n+G queue with a general patience distribution. (With abandonment, β

can be also 0 or negative.)
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In the QED regime, the delay probability P{W > 0} converges to a constant that is

a function of the service grade β and the ratio µ/θ (or 1/θ
1/µ , which is average patience that is

measured in units of average service time). The probability to abandon and average wait vanish,

as λ, n ↑ ∞, at rate
1√
n

. Formulae for different performance measures can be found in [15] or

[23]. It is significant and useful to mention that the QED approximations are often valid over a

wide range of parameters, from the very large call centers (1000’s of agents) to the moderate-size

ones (10’s of agents).

Figure 7: Asymptotic relations between service grade and delay probability
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Figure 7 illustrates the dependence between β and P{W > 0}, for varying values of the ratio

µ/θ. In addition, we plotted the curve for the Erlang-C queue, which is meaningful for positive

β only. Note that for large values of µ/θ (very patient customers) the Erlang-A curves get close

to the Erlang-C curve.

Remark. When β = 0 in (6.1), the staffing level corresponds to the simple rule that does not

take into account stochastic considerations: assign the number of agents equal to the offered

load λ/µ. In Erlang-C, this “naive” approach would lead to system instability. However, in

Erlang-A (which is a much better fit to the real world of call centers than Erlang-C) one would

get a reasonable-to-good performance level. For example, if the service rate µ is equal to the

individual abandonment rate θ, and β = 0, 50% of customers would get service immediately

upon arrival. (Check it in Figure 7. Note that for Erlang-C, 50% delay probability corresponds

to β = 0.5.) This suggests why some call centers that are managed using simplified deterministic

models, actually perform at reasonable service levels. (One obtains the “right answer” from the

“wrong reasons”.)

The QED regime enables one to combine high levels of efficiency (agents’ utilization close

to 100%) and service quality (agents’ accessibility) . The scatterplots in Figure 8 illustrate this

13



point. The plots display data from ACD reports of two call centers: Italian and American,

collected in half-hour intervals during a single working day. The service grade β is calculated

via

β =
n−R√

R
.

We observe moderate-to-small values of abandonment for the service grade −1 ≤ β ≤ 2. Plots

of average waiting time exhibit a similar behavior – see [25].

Figure 8: Service grade for call centers - correlation with abandonment

U.S. data Italian data

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0% 1% 2% 3% 4% 5% 6% 7% 8%

probability to abandon

be
ta

-1

-0.5

0

0.5

1

1.5

2

0% 2% 4% 6% 8% 10%

probability to abandon

be
ta

8:30

ED (Efficiency-Driven) regime.

n ≈ R · (1− γ) , γ > 0 . (6.2)

In this case, virtually all customers wait, the probability to abandon converges to γ and

average wait is close to γ/θ. (See Mandelbaum and Zeltyn [24] for additional performance

measures.) This regime could be used if efficiency considerations are of main significance. Indeed,

it has gained importance in recent research (see, for example, few papers of Whitt [30, 31]),

following the observation that ED could yield performance that is acceptable for many call

centers, for example those operating in not-for-profit environments.

QD (Quality-Driven) regime.

n ≈ R · (1 + γ) , γ > 0 . (6.3)

The staffing regime (6.3) should be implemented if quality considerations far dominate efficiency

considerations (e.g. high-valued customers or emergency phones). Major performance measures

(delay probability, fraction abandoning, average wait) vanish here at an exponential rate of n.

Remark. Above, we considered steady-state performance measures. Process-limit results for

the number-in-system process L = {L(t), t ≥ 0} are available for the QED and ED regimes in

Garnett et al. [15] and Whitt [30], respectively.
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7 Applications to call centers

7.1 Erlang-A performance measures: comparison against real data

We now validate the Erlang-A model against the hourly data for the Israeli bank call center,

already used for the example in Section 4. Three performance measures are considered: prob-

ability to abandon, average waiting time and probability of wait. Their values are calculated

for the hourly intervals using exact Erlang-A formulae. Then the results are aggregated along

the same method employed in Figure 6. The resulting 86 points are compared against the line

y = x: the better the fit the better Erlang-A describes reality.

Computation of the Erlang-A parameters. Parameters λ and µ are calculated for every

hourly interval. We also calculate each hour’s average number of agents n. Because the resulting

n’s need not be integral, we apply a continuous extrapolation of the Erlang-A formulae, obtained

from relationships developed in [26]. Finally, for θ we use formula (4.1).

The results are displayed in Figure 9. The figure’s two left-hand graphs exhibit a relatively

small yet consistent overestimation with respect to empirical values, for moderately and highly

loaded hours. The right-hand graph shows a very good fit everywhere, except for very lightly

and very heavily loaded hours. The underestimation for small values of P{W > 0} can be

probably attributed to violations of work conservation (idle agents do not always answer a call

immediately). Summarizing, it seems that these Erlang-A estimates can be used as close upper

bounds for the main performance characteristics of our call center.

Figure 9: Erlang-A formulas vs. data averages [8]
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7.2 Erlang-A approximations: comparison against real data

In Section 6 we discussed approximations of various performance measures for the Erlang-A

(M/M/n+M) model. Such approximations require significantly less computational effort than

exact Erlang-A formulae. Figure 10, based on the same data as Figure 9, demonstrates a good

fit between data averages and the approximations.

In fact, the fits for the probability of abandonment and average waiting time are somewhat

superior to those in Figure 9 (the approximations provide somewhat larger values than the exact

formulae). This phenomenon suggests two interrelated research questions of interest: explaining

the overestimation in Figure 9 and better understanding the relationship between Erlang-A

formulae and their approximations.

The empirical fit of the simple Erlang-A model and its approximation turns out to be very

(perhaps surprisingly) accurate. Thus, for the call center in consideration – and those like it –

use of Erlang-A for workforce management could and should improve operational performance.

Figure 10: Erlang-A approximations vs. data averages [8]
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8 Some advanced features of 4CallCenters

The 4CallCenters software [12] provides a valuable tool for implementing Erlang-A calculations.

Its basic feature is “Performance Profiler” that enables calculation of all the useful performance

measures, given the four Erlang-A parameters as input. In addition, 4CallCenters allows many

advanced options: staffing queries, graphs, export and import of data and more.
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Here we demonstrate, as an example, two advanced capabilities of 4CallCenters.

Example 1: Advanced profiling. One can vary any input parameters of the Erlang-A

queue and display the corresponding model output (performance measures) either in a table or

graphically. For example, let the average service time equal 2 minutes and average patience 3

minutes. Let the arrival rate vary from 40 to 230 calls per hour, in steps of 10, and the number of

agents from 2 to 12. Then one can immediately produce a table that contains values of different

performance measures for all combinations of the two input parameters.

Figure 11 shows the dependence of the probability to abandon and average wait on different

number of agents. Note that the two plots look identical: the reason is relation (4.1). In addition,

the red curves on both plots in Figure 11 illustrate Economies of Scale (EOS): while offered load

per server remains constant along this curve
(

λ

nµ
=

2
3

)
, performance significantly improves as

the number of agents increases. For example, the probability to abandon is equal to 13.7% for

n = 2, 5.1% for n = 5 and 1.5% for n = 12. Finally, note that both P{Ab} and E[W ] actually

vanish as n gets large.

Figure 11: 4CallCenters. Advanced profiling.
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Example 2: Advanced staffing queries. 4CallCenters enables staffing queries with several

performance goals. For example, assume that the average service time is equal to 4 minutes, and

average patience is 5 minutes. Our goal is to calculate appropriate staffing levels for arrival-rate

values that vary from 100 to 1200, in steps of 50. The performance targets are:

• Probability to abandon less than 3%;

• 80% of customers served within 20 seconds.

Figure 12 presents the screen output of 4CallCenters.

The first plot of Figure 13 displays the minimal staffing level that adheres to both goals. The

EOS phenomenon is observed here as well: 10 agents are needed for 100 calls per hour but only

83 (rather than 10 · 12 = 120) for 1200 calls per hour. (Despite its look, the curve in the first

plot is not a straight line.) The second plot displays the values of the two target performance

measures. (This plot, unlike the first one, is not an immediate output graph of 4CallCenters

but rather an edited version of it.)

Figure 12: 4Callcenters. Advanced staffing queries.

 

Remark. Since the number of agents must be an integer, we observe performance “zigzags”

in the right plot of Figure 13.
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9 Some open research topics

9.1 Dimensioning the Erlang-A queue

One can search for an optimal staffing level, given the trade-off between staffing cost, cost

of customers’ waiting and cost of abandonment. Borst et al. [6] referred to this problem as

dimensioning and solved it for the Erlang-C queue (no abandonment): if the staffing cost and

the cost of waiting are comparable, the optimal staffing should take place in the QED regime,

described in Section 6 (with positive β in formula (6.1)). Ongoing research by Borst et al. [7] is

dedicated to the same question for the Erlang-A queue. For example, let the average operational

cost (per unit of time) be equal to

U(n, λ) = c · n + λa · P{Ab} ,

where c is the staffing cost, and a is the abandonment cost. Our goal is to minimize cost. (Note

that this is in fact mathematically equivalent to maximizing revenues.)

Figure 13: 4CallCenters. Dynamics of staffing level and performance.
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Define the abandonment/staffing cost ratio by r
∆= a/c, and let s

∆=
√

µ/θ. Assume that

a > c/µ. (Otherwise, the asymptotic optimal policy is n∗ = 0: not to provide service at all.)

Then we suggest that the asymptotic optimal staffing level is equal to

n∗ =
[
R + y∗(r; s) ·

√
R

]
, (9.1)

where the square brackets in (9.1) denote the nearest integer value and the function y∗(·) is

defined by

y∗(r; s) ∆= arg min
−∞<y<∞

{
c · y + a · θs ·

[
1 +

h(ys)
sh(−y)

]−1

· [h(ys)− ys]

}
,

and h(·) = φ(·)/(1 − Φ(·)) is the hazard rate of the standard normal distribution (φ(·) is its

density function and Φ(·) is the cumulative distribution function).

As in [6], Figure 14 compares the rule (9.1) with the exact optimal staffing values. We

consider five exponential patience distributions with different means and perform comparisons

by varying the value of the ratio r. A perfect fit is observed for all the special cases!

Numerical experiments for other cost optimization problems (e.g. with waiting cost, instead

of abandonment cost) also demonstrate a very close correspondence between exact values and

the corresponding analogs of (9.1). Hence the goal is to develop a theoretical framework, parallel

to [6], that will support our experimental research. In addition, we are working on a constraint

satisfaction version where one chooses the least number of agents that adheres to a given con-

straint on the waiting and/or the abandonment cost. This latter formulation is in fact closer to

the way that managers perceive their staffing problems in practice.

Figure 14: Cost optimization. Approximation vs. exact optimum.
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9.2 Human behavior

The Erlang-A model assumes exponential iid patience times that do not depend on the state of

the system, time-of-day etc. In practice, these assumptions are not always valid.

In Figure 15 we display estimates of the hazard rates of the customers’ patience for two

banks: a large U.S. bank and a small Israeli one. In the two cases we observe different, but

clearly non-exponential patterns. (Recall that the hazard rate of an exponential random variable

is a constant.) American customers are very impatient at the beginning of their wait, but their

patience stabilizes after approximately 10 seconds. In contrast, Israeli customers have two clear

peaks of abandonment: approximately at 15 and at 60 seconds. (It turns out that these two

surges of abandonment take place immediately after two recorded messages to which customers

are exposed: the first one when they enter the queue and the second after approximately 1

minute.)

Therefore, at least in some applications customers’ patience times are non-exponential and

applicability of the Erlang-A formulae to such systems should be studied. (Recall Section 7.)

Figure 15: Bank data: hazard rates of patience times
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Patience index. In search for a better understanding of customers’ (im)patience, we have

found a relative definition to be of use. Specifically, we define the patience index to be

Theoretical Patience Index ∆=
time a customer is willing to wait

time a customer is required to wait

=
average patience

average offered wait
=

E[τ ]
E[V ]

.
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While this patience index makes sense intuitively, its calculation requires the application of

survival analysis techniques to call-by-call data. Such data may not be available in certain

circumstances. Therefore, we wish to find an empirical index which will work as an auxiliary

measure for the patience index.

We found the following to be a very useful definition:

Empirical Patience Index ∆=
% served

% abandoned
.

The empirical index is easily calculable since both the numbers of served and of abandoned calls

are very easy to obtain from call-center reports.

Figure 16 demonstrates how well the empirical patience index estimates the theoretical pa-

tience index for the Israeli bank data [8]. (Aggregated data of 68 quarter hours between 7am

and midnight is used.)

Figure 16: Patience index – empirical vs. theoretical [9]
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Under certain circumstances, one can explain the closeness of the theoretical and empirical

indices [8]. However, these explanations are unsatisfactory and hence leave open this research

direction.

Adaptive behavior. In the papers [21, 29, 35], Mandelbaum, Shimkin and Zohar analyze

models for an adaptive behavior of tele-customers, which “tune” their patience according to

anticipated or perceived systems congestion. Data from the call center of our Israeli bank

supports the applicability of these models, but more is to be done in this direction.
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9.3 Uncertainty in parameter values

In the real world, one never knows the exact values of the four Erlang-A parameters. Therefore,

it is essential to study the sensitivity of performance measures. In a recent paper [33], Whitt cal-

culates elasticities in Erlang-A, which measure the percentage change of a performance measure

caused by a small percentage change in a parameter. Both exact numerical algorithm and sev-

eral types of approximations are used. It turns out that Erlang-A performance is quite sensitive

to small changes in the arrival rate, service rate, or number of agents, but relatively insensitive

to small changes in the abandonment rate.

In staffing planning, of which the number of agents is the output, it is reasonable to assume

knowledge of the service rate. Thus, the problem of uncertainty in the arrival rate surfaces as

the most significant.

In Brown et al. [8] it was shown that the Poisson arrival rate in an Israeli call center varies

from day to day and its prediction raised statistical and practical challenges. This motivates

the study of queueing models, in which the Poisson arrival rate Λ (the arrival-rate function) is

a random variable (random process).

If E(Λ) → ∞ and its standard deviation is of the order
√

E(Λ), we expect that the QED

operational regime and the square-root staffing rule will play a role that is similar to the one with

known (deterministic) arrival rate; the offered load R in (6.1) will be replaced by the average

offered load E(Λ)/µ, and uncertainty will manifest itself through a different value of the service

grade β. However, if σ(Λ) is of the order E(Λ), the “cruder” ED regime seems to be the most

appropriate; see Whitt [32], and Bassamboo, Harrison and Zeevi [4].
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A The Erlang-A queue: useful formulae for the steady-state
distribution and some performance measures

Steady-state distribution. Palm [26] derived the following representation for the steady-

state distribution, defined in (3.1):

πj =


πn ·

n!
j! · (λ/µ)n−j

, 0 ≤ j ≤ n ,

πn ·
(λ/θ)j−n∏j−n

k=1

(nµ
θ + k

) , j ≥ n + 1 ,

where

πn =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

,

A(x, y) ∆=
xey

yx
· γ(x, y),

and

γ(x, y) ∆=
∫ y

0
tx−1e−tdt , x > 0, y ≥ 0.

is the incomplete Gamma function; E1,n denotes the blocking probability in the M/M/n/n

(Erlang-B) system:

E1,n =
(λ/µ)n

n!∑n
j=0

(λ/µ)j

j!

.
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Remark. A simple way for calculating E1,n is the recursion

E1,0 = 0; E1,n =
ρE1,n−1

1 + ρE1,n−1
, n ≥ 1,

in which ρ is the offered load per agent, namely

ρ
∆=

λ

nµ
.

Performance measures. As discussed above, 4CallCenters [12] provides a convenient tool

for Erlang-A calculations. Mandelbaum and Zeltyn [24] present a theoretical framework for

computations in the more general M/M/n+G system and explain how to adapt it to Erlang-

A. Both approaches can be used for calculation of the practical measures from Subsection 4.1.

Below we present several explicit expressions. Average wait and the probability to abandon are

the most widely used performance measures in practice. To these we add the probability of wait,

which is important in view of the fact that it characterizes the operational regime (ED, QD or

QED) – recall Section 6.

Probability of wait. Following Palm [26],

P{W > 0} =
A

(
nµ
θ , λ

θ

)
· E1,n

1 +
(
A

(
nµ
θ , λ

θ

)
− 1

)
· E1,n

, (A.1)

Probability to abandon. The probability to abandon of delayed customers is equal to

P[Ab|W > 0] =
1

ρA
(

nµ
θ , λ

θ

) + 1− 1
ρ

. (A.2)

The fraction abandoning, P{Ab}, is simply the product P[Ab|W > 0]× P{W > 0}.

Average waiting time. Average waiting time of delayed customers is computed via (A.2)

and (4.1):

E[W |W > 0] =
1
θ
·

 1

ρA
(

nµ
θ , λ

θ

) + 1− 1
ρ

 . (A.3)

The unconditional average wait E[W ] equals the product of (A.1) with (A.3).
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